BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22425751)

  • 21. Alzheimer's disease and the glutamate NMDA receptor.
    Doraiswamy PM
    Psychopharmacol Bull; 2003; 37(2):41-9. PubMed ID: 14566213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Common influences of non-competitive NMDA receptor antagonists on the consolidation and reconsolidation of cocaine-cue memory.
    Alaghband Y; Marshall JF
    Psychopharmacology (Berl); 2013 Apr; 226(4):707-19. PubMed ID: 22829432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Piracetam, an AMPAkine drug, facilitates memory consolidation in the day-old chick.
    Samartgis JR; Schachte L; Hazi A; Crowe SF
    Pharmacol Biochem Behav; 2012 Dec; 103(2):353-8. PubMed ID: 22940587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMDA receptor blockers prevents the facilitatory effects of post-training intra-dorsal hippocampal NMDA and physostigmine on memory retention of passive avoidance learning in rats.
    Jafari-Sabet M
    Behav Brain Res; 2006 Apr; 169(1):120-7. PubMed ID: 16443290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Memantine blocks alpha7* nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons.
    Aracava Y; Pereira EF; Maelicke A; Albuquerque EX
    J Pharmacol Exp Ther; 2005 Mar; 312(3):1195-205. PubMed ID: 15522999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ketamine affects memory consolidation: differential effects in T-maze and passive avoidance paradigms in mice.
    Wang JH; Fu Y; Wilson FA; Ma YY
    Neuroscience; 2006 Jul; 140(3):993-1002. PubMed ID: 16600517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subchronic memantine administration on spatial learning, exploratory activity, and nest-building in an APP/PS1 mouse model of Alzheimer's disease.
    Filali M; Lalonde R; Rivest S
    Neuropharmacology; 2011 May; 60(6):930-6. PubMed ID: 21281652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The molecular basis of memantine action in Alzheimer's disease and other neurologic disorders: low-affinity, uncompetitive antagonism.
    Lipton SA
    Curr Alzheimer Res; 2005 Apr; 2(2):155-65. PubMed ID: 15974913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro galantamine-memantine co-application: mechanism of beneficial action.
    Zhao X; Marszalec W; Toth PT; Huang J; Yeh JZ; Narahashi T
    Neuropharmacology; 2006 Dec; 51(7-8):1181-91. PubMed ID: 17011596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease: preclinical evidence.
    Danysz W; Parsons CG
    Int J Geriatr Psychiatry; 2003 Sep; 18(Suppl 1):S23-32. PubMed ID: 12973747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contemporary issues in the treatment of Alzheimer's disease: tangible benefits of current therapies.
    Tariot PN
    J Clin Psychiatry; 2006; 67 Suppl 3():15-22; quiz 23. PubMed ID: 16649847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M
    Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modifications of the behavioral profile of non-competitive NMDA receptor antagonists, memantine, amantadine and (+)MK-801 after chronic administration.
    Hesselink MB; Smolders H; De Boer AG; Breimer DD; Danysz W
    Behav Pharmacol; 1999 Feb; 10(1):85-98. PubMed ID: 10780305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Alzheimer's disease drug memantine increases the number of radial glia-like progenitor cells in adult hippocampus.
    Namba T; Maekawa M; Yuasa S; Kohsaka S; Uchino S
    Glia; 2009 Aug; 57(10):1082-90. PubMed ID: 19115386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The roles of RNA synthesis and protein translation during reconsolidation of passive-avoidance learning in the day-old chick.
    Sherry JM; Milsome SL; Crowe SF
    Pharmacol Biochem Behav; 2010 Jan; 94(3):438-46. PubMed ID: 19857511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibitory avoidance memory deficit induced by scopolamine: Interaction of cholinergic and glutamatergic systems in the ventral tegmental area.
    Mahmoodi G; Ahmadi S; Pourmotabbed A; Oryan S; Zarrindast MR
    Neurobiol Learn Mem; 2010 Jul; 94(1):83-90. PubMed ID: 20403448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Memantine improves observational learning in day-old chicks.
    Barber TA; Kimbrough TN
    Behav Pharmacol; 2015 Jun; 26(4):407-10. PubMed ID: 25738760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of NMDA and AMPA receptor antagonists on corticosterone facilitation of long-term memory in the chick.
    Venero C; Sandi C
    Eur J Neurosci; 1997 Sep; 9(9):1923-8. PubMed ID: 9383215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different effects of two N-methyl-D-aspartate receptor antagonists on seizures, spontaneous behavior, and motor performance in immature rats.
    Mares P; Mikulecká A
    Epilepsy Behav; 2009 Jan; 14(1):32-9. PubMed ID: 18786655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The clinical relevance of memantine use].
    Sobów T
    Psychiatr Pol; 2004; 38(2):321-30. PubMed ID: 15307296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.