BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22425892)

  • 21. Pharmaceutical inhibition of glycogen synthetase kinase-3β reduces multiple myeloma-induced bone disease in a novel murine plasmacytoma xenograft model.
    Gunn WG; Krause U; Lee N; Gregory CA
    Blood; 2011 Feb; 117(5):1641-51. PubMed ID: 21123822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function.
    Vallet S; Pozzi S; Patel K; Vaghela N; Fulciniti MT; Veiby P; Hideshima T; Santo L; Cirstea D; Scadden DT; Anderson KC; Raje N
    Leukemia; 2011 Jul; 25(7):1174-81. PubMed ID: 21403648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathogenesis of myeloma bone disease.
    Roodman GD
    J Cell Biochem; 2010 Feb; 109(2):283-91. PubMed ID: 20014067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma.
    Heath DJ; Chantry AD; Buckle CH; Coulton L; Shaughnessy JD; Evans HR; Snowden JA; Stover DR; Vanderkerken K; Croucher PI
    J Bone Miner Res; 2009 Mar; 24(3):425-36. PubMed ID: 19016584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma.
    Heath DJ; Vanderkerken K; Cheng X; Gallagher O; Prideaux M; Murali R; Croucher PI
    Cancer Res; 2007 Jan; 67(1):202-8. PubMed ID: 17210700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of the PI3K inhibitor BKM120 on tumour growth and osteolytic bone disease in multiple myeloma.
    Martin SK; Gan ZY; Fitter S; To LB; Zannettino AC
    Leuk Res; 2015 Mar; 39(3):380-7. PubMed ID: 25624048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bisphosphonates and osteoprotegerin as inhibitors of myeloma bone disease.
    Croucher PI; Shipman CM; Van Camp B; Vanderkerken K
    Cancer; 2003 Feb; 97(3 Suppl):818-24. PubMed ID: 12548581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor-host cell interactions in the bone disease of myeloma.
    Fowler JA; Edwards CM; Croucher PI
    Bone; 2011 Jan; 48(1):121-8. PubMed ID: 20615487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myeloma cells and bone marrow osteoblast interactions: role in the development of osteolytic lesions in multiple myeloma.
    Giuliani N; Rizzoli V
    Leuk Lymphoma; 2007 Dec; 48(12):2323-9. PubMed ID: 18067006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease.
    Vallet S; Mukherjee S; Vaghela N; Hideshima T; Fulciniti M; Pozzi S; Santo L; Cirstea D; Patel K; Sohani AR; Guimaraes A; Xie W; Chauhan D; Schoonmaker JA; Attar E; Churchill M; Weller E; Munshi N; Seehra JS; Weissleder R; Anderson KC; Scadden DT; Raje N
    Proc Natl Acad Sci U S A; 2010 Mar; 107(11):5124-9. PubMed ID: 20194748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in the understanding of myeloma bone disease and tumour growth.
    Yaccoby S
    Br J Haematol; 2010 May; 149(3):311-21. PubMed ID: 20230410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of myeloma cells with osteoclasts promote tumour expansion and bone degradation through activation of a complex signalling network and upregulation of cathepsin K, matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA).
    Hecht M; von Metzler I; Sack K; Kaiser M; Sezer O
    Exp Cell Res; 2008 Mar; 314(5):1082-93. PubMed ID: 18053985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation.
    Nguyen AN; Stebbins EG; Henson M; O'Young G; Choi SJ; Quon D; Damm D; Reddy M; Ma JY; Haghnazari E; Kapoun AM; Medicherla S; Protter A; Schreiner GF; Kurihara N; Anderson J; Roodman GD; Navas TA; Higgins LS
    Exp Cell Res; 2006 Jun; 312(10):1909-23. PubMed ID: 16600214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of bone lesions in multiple myeloma and lymphoma.
    Roodman GD
    Cancer; 1997 Oct; 80(8 Suppl):1557-63. PubMed ID: 9362422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma.
    Abe M; Hiura K; Wilde J; Moriyama K; Hashimoto T; Ozaki S; Wakatsuki S; Kosaka M; Kido S; Inoue D; Matsumoto T
    Blood; 2002 Sep; 100(6):2195-202. PubMed ID: 12200385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined treatment with a transforming growth factor beta inhibitor (1D11) and bortezomib improves bone architecture in a mouse model of myeloma-induced bone disease.
    Nyman JS; Merkel AR; Uppuganti S; Nayak B; Rowland B; Makowski AJ; Oyajobi BO; Sterling JA
    Bone; 2016 Oct; 91():81-91. PubMed ID: 27423464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rafoxanide, an organohalogen drug, triggers apoptosis and cell cycle arrest in multiple myeloma by enhancing DNA damage responses and suppressing the p38 MAPK pathway.
    Xiao W; Xu Z; Chang S; Li B; Yu D; Wu H; Xie Y; Wang Y; Xie B; Sun X; Kong Y; Lan X; Bu W; Chen G; Gao L; Wu X; Shi J; Zhu W
    Cancer Lett; 2019 Mar; 444():45-59. PubMed ID: 30583070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease.
    Lawson MA; Paton-Hough JM; Evans HR; Walker RE; Harris W; Ratnabalan D; Snowden JA; Chantry AD
    PLoS One; 2015; 10(3):e0119546. PubMed ID: 25768011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical role of AKT protein in myeloma-induced osteoclast formation and osteolysis.
    Cao H; Zhu K; Qiu L; Li S; Niu H; Hao M; Yang S; Zhao Z; Lai Y; Anderson JL; Fan J; Im HJ; Chen D; Roodman GD; Xiao G
    J Biol Chem; 2013 Oct; 288(42):30399-30410. PubMed ID: 24005670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Native osteoprotegerin gene transfer inhibits the development of murine osteolytic bone disease induced by tumor xenografts.
    Doran PM; Turner RT; Chen D; Facteau SM; Ludvigson JM; Khosla S; Riggs BL; Russell SJ
    Exp Hematol; 2004 Apr; 32(4):351-9. PubMed ID: 15050745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.