BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 22425998)

  • 1. MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function.
    Metzger T; Gache V; Xu M; Cadot B; Folker ES; Richardson BE; Gomes ER; Baylies MK
    Nature; 2012 Mar; 484(7392):120-4. PubMed ID: 22425998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The
    Rosen JN; Azevedo M; Soffar DB; Boyko VP; Brendel MB; Schulman VK; Baylies MK
    J Cell Biol; 2019 Feb; 218(2):524-540. PubMed ID: 30626718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microtubule-binding protein ensconsin is an essential cofactor of kinesin-1.
    Barlan K; Lu W; Gelfand VI
    Curr Biol; 2013 Feb; 23(4):317-22. PubMed ID: 23394833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissect Kif5b in nuclear positioning during myogenesis: the light chain binding domain and the autoinhibitory peptide are both indispensable.
    Wang Z; Xue W; Li X; Lin R; Cui J; Huang JD
    Biochem Biophys Res Commun; 2013 Mar; 432(2):242-7. PubMed ID: 23402760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensconsin-dependent changes in microtubule organization and LINC complex-dependent changes in nucleus-nucleus interactions result in quantitatively distinct myonuclear positioning defects.
    Collins MA; Coon LA; Thomas R; Mandigo TR; Wynn E; Folker ES
    Mol Biol Cell; 2021 Nov; 32(21):ar27. PubMed ID: 34524872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP7 family proteins regulate kinesin-1 recruitment and activation.
    Hooikaas PJ; Martin M; Mühlethaler T; Kuijntjes GJ; Peeters CAE; Katrukha EA; Ferrari L; Stucchi R; Verhagen DGF; van Riel WE; Grigoriev I; Altelaar AFM; Hoogenraad CC; Rüdiger SGD; Steinmetz MO; Kapitein LC; Akhmanova A
    J Cell Biol; 2019 Apr; 218(4):1298-1318. PubMed ID: 30770434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging Approaches to Investigate Myonuclear Positioning in Drosophila.
    Azevedo M; Schulman VK; Folker E; Balakrishnan M; Baylies M
    Methods Mol Biol; 2016; 1411():291-312. PubMed ID: 27147050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells.
    Wilson MH; Holzbaur EL
    J Cell Sci; 2012 Sep; 125(Pt 17):4158-69. PubMed ID: 22623723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensconsin/Map7 promotes microtubule growth and centrosome separation in Drosophila neural stem cells.
    Gallaud E; Caous R; Pascal A; Bazile F; Gagné JP; Huet S; Poirier GG; Chrétien D; Richard-Parpaillon L; Giet R
    J Cell Biol; 2014 Mar; 204(7):1111-21. PubMed ID: 24687279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between microtubule-associated proteins directs motor transport.
    Monroy BY; Sawyer DL; Ackermann BE; Borden MM; Tan TC; Ori-McKenney KM
    Nat Commun; 2018 Apr; 9(1):1487. PubMed ID: 29662074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Map7/7D1 and Dvl form a feedback loop that facilitates microtubule remodeling and Wnt5a signaling.
    Kikuchi K; Nakamura A; Arata M; Shi D; Nakagawa M; Tanaka T; Uemura T; Fujimori T; Kikuchi A; Uezu A; Sakamoto Y; Nakanishi H
    EMBO Rep; 2018 Jul; 19(7):. PubMed ID: 29880710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MACF1 controls skeletal muscle function through the microtubule-dependent localization of extra-synaptic myonuclei and mitochondria biogenesis.
    Ghasemizadeh A; Christin E; Guiraud A; Couturier N; Abitbol M; Risson V; Girard E; Jagla C; Soler C; Laddada L; Sanchez C; Jaque-Fernandez FI; Jacquemond V; Thomas JL; Lanfranchi M; Courchet J; Gondin J; Schaeffer L; Gache V
    Elife; 2021 Aug; 10():. PubMed ID: 34448452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAP7 regulates organelle transport by recruiting kinesin-1 to microtubules.
    Chaudhary AR; Lu H; Krementsova EB; Bookwalter CS; Trybus KM; Hendricks AG
    J Biol Chem; 2019 Jun; 294(26):10160-10171. PubMed ID: 31085585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells.
    Wilson MH; Holzbaur EL
    Development; 2015 Jan; 142(1):218-28. PubMed ID: 25516977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The auto-inhibitory domain and ATP-independent microtubule-binding region of Kinesin heavy chain are major functional domains for transport in the Drosophila germline.
    Williams LS; Ganguly S; Loiseau P; Ng BF; Palacios IM
    Development; 2014 Jan; 141(1):176-86. PubMed ID: 24257625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila ensconsin promotes productive recruitment of Kinesin-1 to microtubules.
    Sung HH; Telley IA; Papadaki P; Ephrussi A; Surrey T; Rørth P
    Dev Cell; 2008 Dec; 15(6):866-76. PubMed ID: 19081075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule motors involved in nuclear movement during skeletal muscle differentiation.
    Gache V; Gomes ER; Cadot B
    Mol Biol Cell; 2017 Apr; 28(7):865-874. PubMed ID: 28179457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein MAP7.
    Ferro LS; Fang Q; Eshun-Wilson L; Fernandes J; Jack A; Farrell DP; Golcuk M; Huijben T; Costa K; Gur M; DiMaio F; Nogales E; Yildiz A
    Science; 2022 Jan; 375(6578):326-331. PubMed ID: 35050657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role for kinesin heavy chain in controlling vesicle transport into dendrites in Drosophila.
    Henthorn KS; Roux MS; Herrera C; Goldstein LS
    Mol Biol Cell; 2011 Nov; 22(21):4038-46. PubMed ID: 21880894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynactin is required to maintain nuclear position within postmitotic Drosophila photoreceptor neurons.
    Whited JL; Cassell A; Brouillette M; Garrity PA
    Development; 2004 Oct; 131(19):4677-86. PubMed ID: 15329347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.