These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 22426061)
21. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein. Tomalty HE; Walker VK Biochem Biophys Res Commun; 2014 Sep; 452(3):636-41. PubMed ID: 25193694 [TBL] [Abstract][Full Text] [Related]
22. Frozen assembly of gold nanoparticles for rapid analysis of antifreeze protein activity. Park JI; Lee JH; Gwak Y; Kim HJ; Jin E; Kim YP Biosens Bioelectron; 2013 Mar; 41():752-7. PubMed ID: 23084754 [TBL] [Abstract][Full Text] [Related]
23. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710 [TBL] [Abstract][Full Text] [Related]
24. Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells. Kim HJ; Shim HE; Lee JH; Kang YC; Hur YB J Microbiol Biotechnol; 2015 Dec; 25(12):1989-96. PubMed ID: 26323271 [TBL] [Abstract][Full Text] [Related]
25. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity. Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764 [TBL] [Abstract][Full Text] [Related]
26. Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria. Mangiagalli M; Bar-Dolev M; Tedesco P; Natalello A; Kaleda A; Brocca S; de Pascale D; Pucciarelli S; Miceli C; Braslavsky I; Lotti M FEBS J; 2017 Jan; 284(1):163-177. PubMed ID: 27860412 [TBL] [Abstract][Full Text] [Related]
27. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity. Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940 [TBL] [Abstract][Full Text] [Related]
28. When are antifreeze proteins in solution essential for ice growth inhibition? Drori R; Davies PL; Braslavsky I Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514 [TBL] [Abstract][Full Text] [Related]
30. The basis for hyperactivity of antifreeze proteins. Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111 [TBL] [Abstract][Full Text] [Related]
31. Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris. Lee JH; Lee SG; Do H; Park JC; Kim E; Choe YH; Han SJ; Kim HJ Appl Microbiol Biotechnol; 2013 Apr; 97(8):3383-93. PubMed ID: 23203635 [TBL] [Abstract][Full Text] [Related]
32. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp. Jung W; Campbell RL; Gwak Y; Kim JI; Davies PL; Jin E PLoS One; 2016; 11(4):e0154056. PubMed ID: 27097164 [TBL] [Abstract][Full Text] [Related]
33. Conjugation of type I antifreeze protein to polyallylamine increases thermal hysteresis activity. Can O; Holland NB Bioconjug Chem; 2011 Oct; 22(10):2166-71. PubMed ID: 21905742 [TBL] [Abstract][Full Text] [Related]
34. The protective effect of Leucosporidium-derived ice-binding protein (LeIBP) on bovine oocytes and embryos during vitrification. Sun WS; Jang H; Kwon HJ; Kim KY; Ahn SB; Hwang S; Lee SG; Lee JH; Hwang IS; Lee JW Theriogenology; 2020 Jul; 151():137-143. PubMed ID: 32361180 [TBL] [Abstract][Full Text] [Related]
35. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins. Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359 [TBL] [Abstract][Full Text] [Related]
36. Protection of Alcohol Dehydrogenase against Freeze-Thaw Stress by Ice-Binding Proteins Is Proportional to Their Ice Recrystallization Inhibition Property. Lee YH; Kim K; Lee JH; Kim HJ Mar Drugs; 2020 Dec; 18(12):. PubMed ID: 33322085 [TBL] [Abstract][Full Text] [Related]
37. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Garnham CP; Natarajan A; Middleton AJ; Kuiper MJ; Braslavsky I; Davies PL Biochemistry; 2010 Oct; 49(42):9063-71. PubMed ID: 20853841 [TBL] [Abstract][Full Text] [Related]
38. Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers. Nagel L; Plattner C; Budke C; Majer Z; DeVries AL; Berkemeier T; Koop T; Sewald N Amino Acids; 2011 Aug; 41(3):719-32. PubMed ID: 21603949 [TBL] [Abstract][Full Text] [Related]
39. Hyperactive antifreeze protein from fish contains multiple ice-binding sites. Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917 [TBL] [Abstract][Full Text] [Related]
40. Functional Analysis of a Bacterial Antifreeze Protein Indicates a Cooperative Effect between Its Two Ice-Binding Domains. Wang C; Oliver EE; Christner BC; Luo BH Biochemistry; 2016 Jul; 55(28):3975-83. PubMed ID: 27359086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]