These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 22426083)
1. Metabolism and cold tolerance of overwintering adult mountain pine beetles (Dendroctonus ponderosae): evidence of facultative diapause? Lester JD; Irwin JT J Insect Physiol; 2012 Jun; 58(6):808-15. PubMed ID: 22426083 [TBL] [Abstract][Full Text] [Related]
2. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. Régnière J; Bentz B J Insect Physiol; 2007 Jun; 53(6):559-72. PubMed ID: 17412358 [TBL] [Abstract][Full Text] [Related]
3. Cold tolerance and supercooling capacity in overwintering adults of elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Soudi Sh; Moharramipour S Environ Entomol; 2011 Dec; 40(6):1546-53. PubMed ID: 22217772 [TBL] [Abstract][Full Text] [Related]
4. Global and comparative proteomic profiling of overwintering and developing mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), larvae. Bonnett TR; Robert JA; Pitt C; Fraser JD; Keeling CI; Bohlmann J; Huber DP Insect Biochem Mol Biol; 2012 Dec; 42(12):890-901. PubMed ID: 22982448 [TBL] [Abstract][Full Text] [Related]
5. Autumn shifts in cold tolerance metabolites in overwintering adult mountain pine beetles. Thompson KM; Huber DPW; Murray BW PLoS One; 2020; 15(1):e0227203. PubMed ID: 31914144 [TBL] [Abstract][Full Text] [Related]
6. The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts. Goodsman DW; Erbilgin N; Lieffers VJ Environ Entomol; 2012 Jun; 41(3):478-86. PubMed ID: 22732605 [TBL] [Abstract][Full Text] [Related]
7. Physiological and biochemical analysis of overwintering and cold tolerance in two Central European populations of the spruce bark beetle, Ips typographus. Koštál V; Doležal P; Rozsypal J; Moravcová M; Zahradníčková H; Simek P J Insect Physiol; 2011 Aug; 57(8):1136-46. PubMed ID: 21420974 [TBL] [Abstract][Full Text] [Related]
8. Relationships between body weight of overwintering larvae and supercooling capacity; diapause intensity and post-diapause reproductive potential in Chilo suppressalis Walker. Xu S; Wang ML; Ding N; Ma WH; Li YN; Lei CL; Wang XP J Insect Physiol; 2011 May; 57(5):653-9. PubMed ID: 21192945 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of Supercooling Ability and Cold Tolerance of the Alder Beetle (Coleoptera: Chrysomelidae). Hiiesaar K; Kaart T; Williams IH; Luik A; Metspalu L; Ploomi A; Kruus E; Jõgar K; Mänd M Environ Entomol; 2018 Aug; 47(4):1024-1029. PubMed ID: 29850836 [TBL] [Abstract][Full Text] [Related]
10. Adaptive strategies of overwintering adults: reproductive diapause and mating behavior in a grasshopper, Stenocatantops splendens (Orthoptera: Catantopidae). Zhu DH; Cui SS; Fan YS; Liu Z Insect Sci; 2013 Apr; 20(2):235-44. PubMed ID: 23955863 [TBL] [Abstract][Full Text] [Related]
11. Cold Tolerance of Mountain Pine Beetle (Coleoptera: Curculionidae) Eggs From the Historic and Expanded Ranges. Bleiker KP; Smith GD; Humble LM Environ Entomol; 2017 Oct; 46(5):1165-1170. PubMed ID: 28961978 [TBL] [Abstract][Full Text] [Related]
12. Cold tolerance of the harlequin ladybird Harmonia axyridis in Europe. Berkvens N; Bale JS; Berkvens D; Tirry L; De Clercq P J Insect Physiol; 2010 Apr; 56(4):438-44. PubMed ID: 19951708 [TBL] [Abstract][Full Text] [Related]
13. Temperature-dependent chemical components accumulation in Hippodamia variegata (Coleoptera: Coccinellidae) during overwintering. Hamedi N; Moharramipour S; Barzegar M Environ Entomol; 2013 Apr; 42(2):375-80. PubMed ID: 23575029 [TBL] [Abstract][Full Text] [Related]
14. Physiology of cold tolerance in the bark beetle, Pityogenes chalcographus and its overwintering in spruce stands. Koštál V; Miklas B; Doležal P; Rozsypal J; Zahradníčková H J Insect Physiol; 2014 Apr; 63():62-70. PubMed ID: 24607639 [TBL] [Abstract][Full Text] [Related]
15. Deep supercooling, vitrification and limited survival to -100{degrees}C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. Sformo T; Walters K; Jeannet K; Wowk B; Fahy GM; Barnes BM; Duman JG J Exp Biol; 2010 Feb; 213(3):502-9. PubMed ID: 20086136 [TBL] [Abstract][Full Text] [Related]
16. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation. Terblanche JS; Clusella-Trullas S; Chown SL J Exp Biol; 2010 Sep; 213(Pt 17):2940-9. PubMed ID: 20709922 [TBL] [Abstract][Full Text] [Related]
17. Resting metabolic rate can vary with age independently from body mass changes in the Colorado potato beetle, Leptinotarsa decemlineata. Piiroinen S; Lindström L; Lyytinen A J Insect Physiol; 2010 Mar; 56(3):277-82. PubMed ID: 19896950 [TBL] [Abstract][Full Text] [Related]
18. Evidence for a Prepupal Diapause in the Mountain Pine Beetle (Dendroctonus ponderosae). Bentz BJ; Hansen EM Environ Entomol; 2018 Feb; 47(1):175-183. PubMed ID: 29293921 [TBL] [Abstract][Full Text] [Related]
19. The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). Terblanche JS; Sinclair BJ; Jaco Klok C; McFarlane ML; Chown SL J Insect Physiol; 2005 Sep; 51(9):1013-23. PubMed ID: 15955537 [TBL] [Abstract][Full Text] [Related]
20. Seasonal temperature alone can synchronize life cycles. Powell JA; Jenkins JL; Logan JA; Bentz BJ Bull Math Biol; 2000 Sep; 62(5):977-98. PubMed ID: 11016093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]