These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 22426128)
1. Improved modeling of side-chain--base interactions and plasticity in protein--DNA interface design. Thyme SB; Baker D; Bradley P J Mol Biol; 2012 Jun; 419(3-4):255-74. PubMed ID: 22426128 [TBL] [Abstract][Full Text] [Related]
2. Motif-directed flexible backbone design of functional interactions. Havranek JJ; Baker D Protein Sci; 2009 Jun; 18(6):1293-305. PubMed ID: 19472357 [TBL] [Abstract][Full Text] [Related]
3. Toward the Accuracy and Speed of Protein Side-Chain Packing: A Systematic Study on Rotamer Libraries. Huang X; Pearce R; Zhang Y J Chem Inf Model; 2020 Jan; 60(1):410-420. PubMed ID: 31851497 [TBL] [Abstract][Full Text] [Related]
4. A simple physical model for the prediction and design of protein-DNA interactions. Havranek JJ; Duarte CM; Baker D J Mol Biol; 2004 Nov; 344(1):59-70. PubMed ID: 15504402 [TBL] [Abstract][Full Text] [Related]
5. Protein design using continuous rotamers. Gainza P; Roberts KE; Donald BR PLoS Comput Biol; 2012 Jan; 8(1):e1002335. PubMed ID: 22279426 [TBL] [Abstract][Full Text] [Related]
6. Rotamer libraries and probabilities of transition between rotamers for the side chains in protein-protein binding. Kirys T; Ruvinsky AM; Tuzikov AV; Vakser IA Proteins; 2012 Aug; 80(8):2089-98. PubMed ID: 22544766 [TBL] [Abstract][Full Text] [Related]
7. Cation-pi/H-bond stair motifs at protein-DNA interfaces. Rooman M; Liévin J; Buisine E; Wintjens R J Mol Biol; 2002 May; 319(1):67-76. PubMed ID: 12051937 [TBL] [Abstract][Full Text] [Related]
8. Modeling side-chain conformation for homologous proteins using an energy-based rotamer search. Wilson C; Gregoret LM; Agard DA J Mol Biol; 1993 Feb; 229(4):996-1006. PubMed ID: 8445659 [TBL] [Abstract][Full Text] [Related]
9. Improved packing of protein side chains with parallel ant colonies. Quan L; Lü Q; Li H; Xia X; Wu H BMC Bioinformatics; 2014; 15 Suppl 12(Suppl 12):S5. PubMed ID: 25474164 [TBL] [Abstract][Full Text] [Related]
10. Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. Bower MJ; Cohen FE; Dunbrack RL J Mol Biol; 1997 Apr; 267(5):1268-82. PubMed ID: 9150411 [TBL] [Abstract][Full Text] [Related]
11. Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library. Peterson RW; Dutton PL; Wand AJ Protein Sci; 2004 Mar; 13(3):735-51. PubMed ID: 14978310 [TBL] [Abstract][Full Text] [Related]
12. Analysis of side-chain rotamers in transmembrane proteins. Chamberlain AK; Bowie JU Biophys J; 2004 Nov; 87(5):3460-9. PubMed ID: 15339811 [TBL] [Abstract][Full Text] [Related]
13. Sequence-Specific Recognition of DNA by Proteins: Binding Motifs Discovered Using a Novel Statistical/Computational Analysis. Jakubec D; Laskowski RA; Vondrasek J PLoS One; 2016; 11(7):e0158704. PubMed ID: 27384774 [TBL] [Abstract][Full Text] [Related]
14. Advantages of fine-grained side chain conformer libraries. Shetty RP; De Bakker PI; DePristo MA; Blundell TL Protein Eng; 2003 Dec; 16(12):963-9. PubMed ID: 14983076 [TBL] [Abstract][Full Text] [Related]
15. Rearrangement of side-chains in a Zif268 mutant highlights the complexities of zinc finger-DNA recognition. Miller JC; Pabo CO J Mol Biol; 2001 Oct; 313(2):309-15. PubMed ID: 11800559 [TBL] [Abstract][Full Text] [Related]