BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 22426203)

  • 1. Vitamin D and the kidney.
    Kumar R; Tebben PJ; Thompson JR
    Arch Biochem Biophys; 2012 Jul; 523(1):77-86. PubMed ID: 22426203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic homeostasis of vitamin D metabolism in the kidney through reciprocal modulation of Cyp27b1 and Cyp24a1 expression.
    Meyer MB; Pike JW
    J Steroid Biochem Mol Biol; 2020 Feb; 196():105500. PubMed ID: 31629064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Vitamin D with Peptide Hormones with Emphasis on Parathyroid Hormone, FGF23, and the Renin-Angiotensin-Aldosterone System.
    Latic N; Erben RG
    Nutrients; 2022 Dec; 14(23):. PubMed ID: 36501215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted genomic deletions identify diverse enhancer functions and generate a kidney-specific, endocrine-deficient
    Meyer MB; Benkusky NA; Kaufmann M; Lee SM; Redfield RR; Jones G; Pike JW
    J Biol Chem; 2019 Jun; 294(24):9518-9535. PubMed ID: 31053643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of vitamin D metabolizing enzymes in murine renal and extrarenal tissues by dietary phosphate, FGF23, and 1,25(OH)2D3.
    Kägi L; Bettoni C; Pastor-Arroyo EM; Schnitzbauer U; Hernando N; Wagner CA
    PLoS One; 2018; 13(5):e0195427. PubMed ID: 29771914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic study of the cause of decreased blood 1,25-Dihydroxyvitamin D in sepsis.
    Li CH; Tang X; Wasnik S; Wang X; Zhang J; Xu Y; Lau KW; Nguyen HB; Baylink DJ
    BMC Infect Dis; 2019 Dec; 19(1):1020. PubMed ID: 31791247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice.
    Chow EC; Quach HP; Vieth R; Pang KS
    Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo.
    Saito H; Maeda A; Ohtomo S; Hirata M; Kusano K; Kato S; Ogata E; Segawa H; Miyamoto K; Fukushima N
    J Biol Chem; 2005 Jan; 280(4):2543-9. PubMed ID: 15531762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in our understanding of the vitamin D endocrine system.
    De Luca HF
    J Lab Clin Med; 1976 Jan; 87(1):7-26. PubMed ID: 173767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced renal calcium excretion in the absence of sclerostin expression: evidence for a novel calcium-regulating bone kidney axis.
    Kumar R; Vallon V
    J Am Soc Nephrol; 2014 Oct; 25(10):2159-68. PubMed ID: 24876121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kidney as an endocrine organ involved in the function of vitamin D.
    DeLuca HF
    Am J Med; 1975 Jan; 58(1):39-47. PubMed ID: 163578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate Metabolism in Health and Disease.
    Peacock M
    Calcif Tissue Int; 2021 Jan; 108(1):3-15. PubMed ID: 32266417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroblast growth factor 23 and disordered vitamin D metabolism in chronic kidney disease: updating the "trade-off" hypothesis.
    Gutiérrez OM
    Clin J Am Soc Nephrol; 2010 Sep; 5(9):1710-6. PubMed ID: 20507957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin D metabolism in the kidney: regulation by phosphorus and fibroblast growth factor 23.
    Perwad F; Portale AA
    Mol Cell Endocrinol; 2011 Dec; 347(1-2):17-24. PubMed ID: 21914460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1alpha-hydroxylase and parathyroid hormone null alleles.
    Xue Y; Karaplis AC; Hendy GN; Goltzman D; Miao D
    Endocrinology; 2006 Oct; 147(10):4801-10. PubMed ID: 16857747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development.
    Xue Y; Karaplis AC; Hendy GN; Goltzman D; Miao D
    Hum Mol Genet; 2005 Jun; 14(11):1515-28. PubMed ID: 15843402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism.
    Barthel TK; Mathern DR; Whitfield GK; Haussler CA; Hopper HA; Hsieh JC; Slater SA; Hsieh G; Kaczmarska M; Jurutka PW; Kolek OI; Ghishan FK; Haussler MR
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):381-8. PubMed ID: 17293108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro.
    Perwad F; Zhang MY; Tenenhouse HS; Portale AA
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1577-83. PubMed ID: 17699549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis.
    Goltzman D; Mannstadt M; Marcocci C
    Front Horm Res; 2018; 50():1-13. PubMed ID: 29597231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.