BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22426306)

  • 1. Mechanical failure begins preferentially near resorption cavities in human vertebral cancellous bone under compression.
    Slyfield CR; Tkachenko EV; Fischer SE; Ehlert KM; Yi IH; Jekir MG; O'Brien RG; Keaveny TM; Hernandez CJ
    Bone; 2012 Jun; 50(6):1281-7. PubMed ID: 22426306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone.
    Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ
    J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative relationships between microdamage and cancellous bone strength and stiffness.
    Hernandez CJ; Lambers FM; Widjaja J; Chapa C; Rimnac CM
    Bone; 2014 Sep; 66():205-13. PubMed ID: 24928495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional characterization of resorption cavity size and location in human vertebral trabecular bone.
    Goff MG; Slyfield CR; Kummari SR; Tkachenko EV; Fischer SE; Yi YH; Jekir MG; Keaveny TM; Hernandez CJ
    Bone; 2012 Jul; 51(1):28-37. PubMed ID: 22507299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voxel size and measures of individual resorption cavities in three-dimensional images of cancellous bone.
    Tkachenko EV; Slyfield CR; Tomlinson RE; Daggett JR; Wilson DL; Hernandez CJ
    Bone; 2009 Sep; 45(3):487-92. PubMed ID: 19482097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical effects of simulated resorption cavities in cancellous bone across a wide range of bone volume fractions.
    Easley SK; Chang MT; Shindich D; Hernandez CJ; Keaveny TM
    J Bone Miner Res; 2012 Sep; 27(9):1927-35. PubMed ID: 22576976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance.
    Lambers FM; Bouman AR; Rimnac CM; Hernandez CJ
    PLoS One; 2013; 8(12):e83662. PubMed ID: 24386247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical analysis of the effects of resorption cavities on cancellous bone strength.
    Hernandez CJ; Gupta A; Keaveny TM
    J Bone Miner Res; 2006 Aug; 21(8):1248-55. PubMed ID: 16869723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element models predict the location of microdamage in cancellous bone following uniaxial loading.
    Goff MG; Lambers FM; Sorna RM; Keaveny TM; Hernandez CJ
    J Biomech; 2015 Nov; 48(15):4142-4148. PubMed ID: 26522622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
    Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P
    Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of vertebral trabecular bone loss using voxel finite element analysis.
    Mc Donnell P; Harrison N; Liebschner MA; Mc Hugh PE
    J Biomech; 2009 Dec; 42(16):2789-96. PubMed ID: 19782987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trabecular microfracture precedes cortical shell failure in the rat caudal vertebra under cyclic overloading.
    Kummari SR; Davis AJ; Vega LA; Ahn N; Cassinelli EH; Hernandez CJ
    Calcif Tissue Int; 2009 Aug; 85(2):127-33. PubMed ID: 19488669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural and biomechanical basis of the gain and loss of bone strength in women and men.
    Seeman E
    Endocrinol Metab Clin North Am; 2003 Mar; 32(1):25-38. PubMed ID: 12699291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-enzymatic glycation alters microdamage formation in human cancellous bone.
    Tang SY; Vashishth D
    Bone; 2010 Jan; 46(1):148-54. PubMed ID: 19747573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of trabecular microarchitecture in the formation, accumulation, and morphology of microdamage in human cancellous bone.
    Karim L; Vashishth D
    J Orthop Res; 2011 Nov; 29(11):1739-44. PubMed ID: 21538510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased intracortical remodeling following fatigue damage.
    Mori S; Burr DB
    Bone; 1993; 14(2):103-9. PubMed ID: 8334026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-level failure accumulation in vertebral cancellous bone: a theoretical model.
    Slomka N; Diamant I; Gefen A
    Technol Health Care; 2008; 16(1):47-60. PubMed ID: 18334787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perforation of cancellous bone trabeculae by damage-stimulated remodelling at resorption pits: a computational analysis.
    McNamara LM; Prendergast PJ
    Eur J Morphol; 2005; 42(1-2):99-109. PubMed ID: 16123029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical consequences of bone loss in cancellous bone.
    van der Linden JC; Homminga J; Verhaar JA; Weinans H
    J Bone Miner Res; 2001 Mar; 16(3):457-65. PubMed ID: 11277263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.