BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 22426359)

  • 1. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities.
    Valerio LG; Cross KP
    Toxicol Appl Pharmacol; 2012 May; 260(3):209-21. PubMed ID: 22426359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities.
    Valencia A; Prous J; Mora O; Sadrieh N; Valerio LG
    Toxicol Appl Pharmacol; 2013 Dec; 273(3):427-34. PubMed ID: 24090816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing computational toxicology models with phytochemicals.
    Valerio LG; Arvidson KB; Busta E; Minnier BL; Kruhlak NL; Benz RD
    Mol Nutr Food Res; 2010 Feb; 54(2):186-94. PubMed ID: 20024931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved in silico prediction of carcinogenic potency (TD50) and the risk specific dose (RSD) adjusted Threshold of Toxicological Concern (TTC) for genotoxic chemicals and pharmaceutical impurities.
    Contrera JF
    Regul Toxicol Pharmacol; 2011 Feb; 59(1):133-41. PubMed ID: 20933038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Vitotox and RadarScreen assays for the rapid assessment of genotoxicity in the early research phase of drug development.
    Westerink WM; Stevenson JC; Lauwers A; Griffioen G; Horbach GJ; Schoonen WG
    Mutat Res; 2009 May; 676(1-2):113-30. PubMed ID: 19393335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules.
    Snyder RD; Pearl GS; Mandakas G; Choy WN; Goodsaid F; Rosenblum IY
    Environ Mol Mutagen; 2004; 43(3):143-58. PubMed ID: 15065202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in QSAR toxicity screening of pharmaceutical impurities and other FDA regulated products.
    Kruhlak NL; Contrera JF; Benz RD; Matthews EJ
    Adv Drug Deliv Rev; 2007 Jan; 59(1):43-55. PubMed ID: 17229485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software.
    Contrera JF; Matthews EJ; Kruhlak NL; Benz RD
    Regul Toxicol Pharmacol; 2005 Dec; 43(3):313-23. PubMed ID: 16242226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of Toxtree and SciQSAR in silico predictive software using a publicly available benchmark mutagenicity database and their applicability for the qualification of impurities in pharmaceuticals.
    Contrera JF
    Regul Toxicol Pharmacol; 2013 Nov; 67(2):285-93. PubMed ID: 23969001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching for an enhanced predictive tool for mutagenicity.
    Klopman G; Zhu H; Fuller MA; Saiakhov RD
    SAR QSAR Environ Res; 2004 Aug; 15(4):251-63. PubMed ID: 15370416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-silico screening of high production volume chemicals for mutagenicity using the MCASE QSAR expert system.
    Klopman G; Chakravarti SK; Harris N; Ivanov J; Saiakhov RD
    SAR QSAR Environ Res; 2003 Apr; 14(2):165-80. PubMed ID: 12747573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Consultancy Activity on In Silico Models for Genotoxic Prediction of Pharmaceutical Impurities.
    Pavan M; Kovarich S; Bassan A; Broccardo L; Yang C; Fioravanzo E
    Methods Mol Biol; 2016; 1425():511-29. PubMed ID: 27311479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A perspective on testing of existing pharmaceutical excipients for genotoxic impurities.
    Brusick DJ
    Regul Toxicol Pharmacol; 2009 Nov; 55(2):200-4. PubMed ID: 19607870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latest advances in computational genotoxicity prediction.
    Naven RT; Greene N; Williams RV
    Expert Opin Drug Metab Toxicol; 2012 Dec; 8(12):1579-87. PubMed ID: 22998164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the structural requirements for mutagencitiy, by incorporating molecular flexibility and metabolic activation of chemicals. II. General Ames mutagenicity model.
    Serafimova R; Todorov M; Pavlov T; Kotov S; Jacob E; Aptula A; Mekenyan O
    Chem Res Toxicol; 2007 Apr; 20(4):662-76. PubMed ID: 17381132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three new consensus QSAR models for the prediction of Ames genotoxicity.
    Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W
    Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of structure-activity relationship and artificial intelligence systems to improve in silico prediction of ames test mutagenicity.
    Mazzatorta P; Tran LA; Schilter B; Grigorov M
    J Chem Inf Model; 2007; 47(1):34-8. PubMed ID: 17238246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico modeling to predict drug-induced phospholipidosis.
    Choi SS; Kim JS; Valerio LG; Sadrieh N
    Toxicol Appl Pharmacol; 2013 Jun; 269(2):195-204. PubMed ID: 23541745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive computational toxicology to support drug safety assessment.
    Valerio LG
    Methods Mol Biol; 2013; 930():341-54. PubMed ID: 23086849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.