These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22426924)

  • 1. Extraction of plasma from whole blood using a deposited microbead plug (DMBP) in a capillary-driven microfluidic device.
    Li C; Liu C; Xu Z; Li J
    Biomed Microdevices; 2012 Jun; 14(3):565-72. PubMed ID: 22426924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dual role of deposited microbead plug (DMBP): a blood filter and a conjugate reagent carrier toward point-of-care microfluidic immunoassay.
    Li C; Liu C; Xu Z; Li J
    Talanta; 2012 Aug; 97():376-81. PubMed ID: 22841095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device.
    VanDelinder V; Groisman A
    Anal Chem; 2006 Jun; 78(11):3765-71. PubMed ID: 16737235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High flow rate microfluidic device for blood plasma separation using a range of temperatures.
    Rodríguez-Villarreal AI; Arundell M; Carmona M; Samitier J
    Lab Chip; 2010 Jan; 10(2):211-9. PubMed ID: 20066249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices.
    Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Cotman C; Jeon NL
    J Vis Exp; 2007; (9):410. PubMed ID: 18989450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic chips designed for measuring biomolecules through a microbead-based quantum dot fluorescence assay.
    Yun KS; Lee D; Kim HS; Yoon E
    Methods Mol Biol; 2009; 544():53-67. PubMed ID: 19488693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microbead array chemical sensor using capillary-based sample introduction: toward the development of an "electronic tongue".
    Sohn YS; Goodey A; Anslyn EV; McDevitt JT; Shear JB; Neikirk DP
    Biosens Bioelectron; 2005 Aug; 21(2):303-12. PubMed ID: 16023957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic device for continuous, real time blood plasma separation.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2006 Jul; 6(7):871-80. PubMed ID: 16804591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device.
    Yan S; Zhang J; Alici G; Du H; Zhu Y; Li W
    Lab Chip; 2014 Aug; 14(16):2993-3003. PubMed ID: 24939716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges.
    Chun H; Chung TD; Kim HC
    Anal Chem; 2005 Apr; 77(8):2490-5. PubMed ID: 15828785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels.
    Zhang H; Xu T; Li CW; Yang M
    Biosens Bioelectron; 2010 Jul; 25(11):2402-7. PubMed ID: 20483585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices.
    Sollier E; Cubizolles M; Fouillet Y; Achard JL
    Biomed Microdevices; 2010 Jun; 12(3):485-97. PubMed ID: 20204703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-assisted CO(2) laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application.
    Chung CK; Chang HC; Shih TR; Lin SL; Hsiao EJ; Chen YS; Chang EC; Chen CC; Lin CC
    Biomed Microdevices; 2010 Feb; 12(1):107-14. PubMed ID: 19830566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood plasma separation in a long two-phase plug flowing through disposable tubing.
    Sun M; Khan ZS; Vanapalli SA
    Lab Chip; 2012 Dec; 12(24):5225-30. PubMed ID: 23114925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of an optically switched dielectrophoretic (ODEP) force for the manipulation and assembly of cell-encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering.
    Lin YH; Yang YW; Chen YD; Wang SS; Chang YH; Wu MH
    Lab Chip; 2012 Mar; 12(6):1164-73. PubMed ID: 22322420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.