BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22426955)

  • 21. Manipulating the self-assembling process to obtain control over the morphologies of copper oxide in hydrothermal synthesis and creating pores in the oxide architecture.
    Zhong Z; Ng V; Luo J; Teh SP; Teo J; Gedanken A
    Langmuir; 2007 May; 23(11):5971-7. PubMed ID: 17469856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled reactions on a copper surface: synthesis and characterization of nanostructured copper compound films.
    Zhang W; Wen X; Yang S
    Inorg Chem; 2003 Aug; 42(16):5005-14. PubMed ID: 12895126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and electrochemical reaction with lithium of mesoporous iron oxalate nanoribbons.
    Aragón MJ; León B; Pérez Vicente C; Tirado JL
    Inorg Chem; 2008 Nov; 47(22):10366-71. PubMed ID: 18847258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical properties of yolk-shell-structured CuO-Fe(2)O(3) powders with various Cu/Fe molar ratios prepared by one-pot spray pyrolysis.
    Yang KM; Hong YJ; Kang YC
    ChemSusChem; 2013 Dec; 6(12):2299-303. PubMed ID: 24106078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CuO Nanoparticles from the strongly hydrated ionic liquid precursor (ILP) tetrabutylammonium hydroxide: evaluation of the ethanol sensing activity.
    Taubert A; Stange F; Li Z; Junginger M; Günter C; Neumann M; Friedrich A
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):791-5. PubMed ID: 22260332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and synthesis of high performance multifunctional ultrathin hematite nanoribbons.
    Sarkar D; Mandal M; Mandal K
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11995-2004. PubMed ID: 24180325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of CuO pricky microspheres with tunable size by a simple solution route.
    Xu Y; Chen D; Jiao X
    J Phys Chem B; 2005 Jul; 109(28):13561-6. PubMed ID: 16852697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum: a comparison of Cu added in aqueous form or as nano- and micro-CuO particles.
    Pang C; Selck H; Misra SK; Berhanu D; Dybowska A; Valsami-Jones E; Forbes VE
    Aquat Toxicol; 2012 Jan; 106-107():114-22. PubMed ID: 22120004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yucca fern shaped CuO nanowires on Cu foam for remitting capacity fading of Li-ion battery anodes.
    Wang Z; Zhang Y; Xiong H; Qin C; Zhao W; Liu X
    Sci Rep; 2018 Apr; 8(1):6530. PubMed ID: 29695815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres.
    Deng C; Hu H; Ge X; Han C; Zhao D; Shao G
    Ultrason Sonochem; 2011 Sep; 18(5):932-7. PubMed ID: 21315647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utilization of high specific surface area CuO-CeO2 catalysts for high temperature processes of hydrogen production: steam re-forming of ethanol and methane dry re-forming.
    Djinović P; Batista J; Cehić B; Pintar A
    J Phys Chem A; 2010 Mar; 114(11):3939-49. PubMed ID: 19883056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aggregation and transport of copper oxide nanoparticles in porous media.
    Jeong SW; Kim SD
    J Environ Monit; 2009 Sep; 11(9):1595-600. PubMed ID: 19724827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties.
    Li Q; Zhang J; Liu B; Li M; Liu R; Li X; Ma H; Yu S; Wang L; Zou Y; Li Z; Zou B; Cui T; Zou G
    Inorg Chem; 2008 Nov; 47(21):9870-3. PubMed ID: 18837547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Study on spectroscopic properties of CuO nanoparticles].
    Wang DJ; Guo L; Li DS; Fu F; Wang WL; Yan HT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):788-92. PubMed ID: 18619299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts.
    Conrad F; Massue C; Kühl S; Kunkes E; Girgsdies F; Kasatkin I; Zhang B; Friedrich M; Luo Y; Armbrüster M; Patzke GR; Behrens M
    Nanoscale; 2012 Mar; 4(6):2018-28. PubMed ID: 22327266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 1D Cu(OH)(2) nanomaterial synthesis templated in water microdroplets.
    Bourret GR; Lennox RB
    J Am Chem Soc; 2010 May; 132(19):6657-9. PubMed ID: 20411931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance.
    Li Y; Yang XY; Rooke J; Van Tendeloo G; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(2):303-12. PubMed ID: 20546764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced electrochemical lithium storage by graphene nanoribbons.
    Bhardwaj T; Antic A; Pavan B; Barone V; Fahlman BD
    J Am Chem Soc; 2010 Sep; 132(36):12556-8. PubMed ID: 20731378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large scale synthesis of tellurium nanoribbons in tetraethylene pentamine aqueous solution and the stability of tellurium nanoribbons in ethanol and water.
    He Z; Yu SH
    J Phys Chem B; 2005 Dec; 109(48):22740-5. PubMed ID: 16853963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical Co@C Nanoflowers: Synthesis and Electrochemical Properties as an Advanced Negative Material for Alkaline Secondary Batteries.
    Li L; Ma J; Zhang Z; Cao B; Wang Y; Jiao L; Yuan H
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23978-83. PubMed ID: 26460934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.