These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22427373)

  • 1. Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?
    Domec JC; Johnson DM
    Tree Physiol; 2012 Mar; 32(3):245-8. PubMed ID: 22427373
    [No Abstract]   [Full Text] [Related]  

  • 2. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area.
    Zhang Y; Oren R; Kang S
    Tree Physiol; 2012 Mar; 32(3):262-79. PubMed ID: 22157418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera.
    Tombesi S; Nardini A; Farinelli D; Palliotti A
    Physiol Plant; 2014 Nov; 152(3):453-64. PubMed ID: 24597791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris).
    Pou A; Flexas J; Alsina Mdel M; Bota J; Carambula C; de Herralde F; Galmés J; Lovisolo C; Jiménez M; Ribas-Carbó M; Rusjan D; Secchi F; Tomàs M; Zsófi Z; Medrano H
    Physiol Plant; 2008 Oct; 134(2):313-23. PubMed ID: 18507813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought.
    Coupel-Ledru A; Lebon É; Christophe A; Doligez A; Cabrera-Bosquet L; Péchier P; Hamard P; This P; Simonneau T
    J Exp Bot; 2014 Nov; 65(21):6205-18. PubMed ID: 25381432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?
    Burkhardt J; Pariyar S
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():91-100. PubMed ID: 26417842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar?
    Rogiers SY; Greer DH; Hutton RJ; Landsberg JJ
    J Exp Bot; 2009; 60(13):3751-63. PubMed ID: 19584116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural variation in stomatal dynamics drives divergence in heat stress tolerance and contributes to seasonal intrinsic water-use efficiency in Vitis vinifera (subsp. sativa and sylvestris).
    Faralli M; Bontempo L; Bianchedi PL; Moser C; Bertamini M; Lawson T; Camin F; Stefanini M; Varotto C
    J Exp Bot; 2022 May; 73(10):3238-3250. PubMed ID: 34929033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near isohydric grapevine cultivar displays higher photosynthetic efficiency and photorespiration rates under drought stress as compared with near anisohydric grapevine cultivar.
    Hochberg U; Degu A; Fait A; Rachmilevitch S
    Physiol Plant; 2013 Apr; 147(4):443-52. PubMed ID: 22901023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought.
    Nolan RH; Tarin T; Santini NS; McAdam SAM; Ruman R; Eamus D
    Plant Cell Environ; 2017 Dec; 40(12):3122-3134. PubMed ID: 28982212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic isohydric-anisohydric behavior of plants upon fruit development: taking a risk for the next generation.
    Sade N; Moshelion M
    Tree Physiol; 2014 Nov; 34(11):1199-202. PubMed ID: 25192885
    [No Abstract]   [Full Text] [Related]  

  • 13. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.
    Rogiers SY; Clarke SJ
    Ann Bot; 2013 Mar; 111(3):433-44. PubMed ID: 23293018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine (Vitis vinifera).
    Buckley TN; Martorell S; Diaz-Espejo A; Tomàs M; Medrano H
    Plant Cell Environ; 2014 Dec; 37(12):2707-21. PubMed ID: 24689930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf Hydraulic Architecture and Stomatal Conductance: A Functional Perspective.
    Rockwell FE; Holbrook NM
    Plant Physiol; 2017 Aug; 174(4):1996-2007. PubMed ID: 28615346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).
    Prieto JA; Louarn G; Perez Peña J; Ojeda H; Simonneau T; Lebon E
    Plant Cell Environ; 2012 Jul; 35(7):1313-28. PubMed ID: 22329397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and CO
    Greer DH
    Plant Physiol Biochem; 2017 Feb; 111():295-303. PubMed ID: 27987474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Péclet effect on leaf water enrichment correlates with leaf hydraulic conductance and mesophyll conductance for CO(2).
    Ferrio JP; Pou A; Florez-Sarasa I; Gessler A; Kodama N; Flexas J; Ribas-Carbó M
    Plant Cell Environ; 2012 Mar; 35(3):611-25. PubMed ID: 21988489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of vulnerability to leaf hydraulic dysfunction during acclimation to drought in grapevines: an osmotic-mediated process.
    Martorell S; Medrano H; Tomàs M; Escalona JM; Flexas J; Diaz-Espejo A
    Physiol Plant; 2015 Mar; 153(3):381-91. PubMed ID: 25132228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydraulic conductivity of red oak (Quercus rubra L.) leaf tissue does not respond to light.
    Rockwell FE; Holbrook NM; Zwieniecki MA
    Plant Cell Environ; 2011 Apr; 34(4):565-79. PubMed ID: 21309791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.