These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 22427522)
1. Functional scaffold-free 3-D cardiac microtissues: a novel model for the investigation of heart cells. Desroches BR; Zhang P; Choi BR; King ME; Maldonado AE; Li W; Rago A; Liu G; Nath N; Hartmann KM; Yang B; Koren G; Morgan JR; Mende U Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2031-42. PubMed ID: 22427522 [TBL] [Abstract][Full Text] [Related]
2. G Kofron CM; Kim TY; King ME; Xie A; Feng F; Park E; Qu Z; Choi BR; Mende U Am J Physiol Heart Circ Physiol; 2017 Oct; 313(4):H810-H827. PubMed ID: 28710068 [TBL] [Abstract][Full Text] [Related]
3. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts. Kim TY; Kofron CM; King ME; Markes AR; Okundaye AO; Qu Z; Mende U; Choi BR PLoS One; 2018; 13(5):e0196714. PubMed ID: 29715271 [TBL] [Abstract][Full Text] [Related]
4. Single-Cell Determination of Cardiac Microtissue Structure and Function Using Light Sheet Microscopy. Turaga D; Matthys OB; Hookway TA; Joy DA; Calvert M; McDevitt TC Tissue Eng Part C Methods; 2020 Apr; 26(4):207-215. PubMed ID: 32111148 [TBL] [Abstract][Full Text] [Related]
5. Action potential metrics and automated data analysis pipeline for cardiotoxicity testing using optically mapped hiPSC-derived 3D cardiac microtissues. Soepriatna AH; Navarrete-Welton A; Kim TY; Daley MC; Bronk P; Kofron CM; Mende U; Coulombe KLK; Choi BR PLoS One; 2023; 18(2):e0280406. PubMed ID: 36745602 [TBL] [Abstract][Full Text] [Related]
6. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. Radisic M; Park H; Martens TP; Salazar-Lazaro JE; Geng W; Wang Y; Langer R; Freed LE; Vunjak-Novakovic G J Biomed Mater Res A; 2008 Sep; 86(3):713-24. PubMed ID: 18041719 [TBL] [Abstract][Full Text] [Related]
7. Cardiac Non-myocyte Cells Show Enhanced Pharmacological Function Suggestive of Contractile Maturity in Stem Cell Derived Cardiomyocyte Microtissues. Ravenscroft SM; Pointon A; Williams AW; Cross MJ; Sidaway JE Toxicol Sci; 2016 Jul; 152(1):99-112. PubMed ID: 27125969 [TBL] [Abstract][Full Text] [Related]
8. Developmental stage-dependent effects of cardiac fibroblasts on function of stem cell-derived engineered cardiac tissues. Liau B; Jackman CP; Li Y; Bursac N Sci Rep; 2017 Feb; 7():42290. PubMed ID: 28181589 [TBL] [Abstract][Full Text] [Related]
9. Engineering Shape-Controlled Microtissues on Compliant Hydrogels with Tunable Rigidity and Extracellular Matrix Ligands. Rexius-Hall ML; Ariyasinghe NR; McCain ML Methods Mol Biol; 2021; 2258():57-72. PubMed ID: 33340354 [TBL] [Abstract][Full Text] [Related]
12. Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Pedrotty DM; Klinger RY; Kirkton RD; Bursac N Cardiovasc Res; 2009 Sep; 83(4):688-97. PubMed ID: 19477968 [TBL] [Abstract][Full Text] [Related]
13. Long-term contractile activity and thyroid hormone supplementation produce engineered rat myocardium with adult-like structure and function. Jackman C; Li H; Bursac N Acta Biomater; 2018 Sep; 78():98-110. PubMed ID: 30086384 [TBL] [Abstract][Full Text] [Related]
14. Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. Xie Y; Garfinkel A; Weiss JN; Qu Z Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H775-84. PubMed ID: 19482965 [TBL] [Abstract][Full Text] [Related]
15. Changes in extracellular K+ concentration modulate contractility of rat and rabbit cardiac myocytes via the inward rectifier K+ current IK1. Bouchard R; Clark RB; Juhasz AE; Giles WR J Physiol; 2004 May; 556(Pt 3):773-90. PubMed ID: 14990678 [TBL] [Abstract][Full Text] [Related]
16. Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Napolitano AP; Dean DM; Man AJ; Youssef J; Ho DN; Rago AP; Lech MP; Morgan JR Biotechniques; 2007 Oct; 43(4):494, 496-500. PubMed ID: 18019341 [TBL] [Abstract][Full Text] [Related]
17. Tissue Engineering of 3D Organotypic Microtissues by Acoustic Assembly. Zhu Y; Serpooshan V; Wu S; Demirci U; Chen P; Güven S Methods Mol Biol; 2019; 1576():301-312. PubMed ID: 28921421 [TBL] [Abstract][Full Text] [Related]
18. The influence of matrix (an)isotropy on cardiomyocyte contraction in engineered cardiac microtissues. van Spreeuwel AC; Bax NA; Bastiaens AJ; Foolen J; Loerakker S; Borochin M; van der Schaft DW; Chen CS; Baaijens FP; Bouten CV Integr Biol (Camb); 2014 Apr; 6(4):422-9. PubMed ID: 24549279 [TBL] [Abstract][Full Text] [Related]
19. Microcontact printing of polydopamine on thermally expandable hydrogels for controlled cell adhesion and delivery of geometrically defined microtissues. Lee YB; Kim SJ; Kim EM; Byun H; Chang HK; Park J; Choi YS; Shin H Acta Biomater; 2017 Oct; 61():75-87. PubMed ID: 28760620 [TBL] [Abstract][Full Text] [Related]
20. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]