BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22427720)

  • 1. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance.
    Kliphuis AM; Klok AJ; Martens DE; Lamers PP; Janssen M; Wijffels RH
    J Appl Phycol; 2012 Apr; 24(2):253-266. PubMed ID: 22427720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum photosynthetic yield of green microalgae in photobioreactors.
    Zijffers JW; Schippers KJ; Zheng K; Janssen M; Tramper J; Wijffels RH
    Mar Biotechnol (NY); 2010 Nov; 12(6):708-18. PubMed ID: 20177951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of O₂:CO₂ ratio on the primary metabolism of Chlamydomonas reinhardtii.
    Kliphuis AM; Martens DE; Janssen M; Wijffels RH
    Biotechnol Bioeng; 2011 Oct; 108(10):2390-402. PubMed ID: 21538341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii.
    Boyle NR; Morgan JA
    BMC Syst Biol; 2009 Jan; 3():4. PubMed ID: 19128495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of green algal growth via dynamic model simulation and process optimization.
    Zhang D; Chanona EA; Vassiliadis VS; Tamburic B
    Biotechnol Bioeng; 2015 Oct; 112(10):2025-39. PubMed ID: 25855209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic modelling and simulation of the light and dark metabolism of Chlamydomonas reinhardtii.
    Shene C; Asenjo JA; Chisti Y
    Plant J; 2018 Dec; 96(5):1076-1088. PubMed ID: 30168220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry.
    Taymaz-Nikerel H; Borujeni AE; Verheijen PJ; Heijnen JJ; van Gulik WM
    Biotechnol Bioeng; 2010 Oct; 107(2):369-81. PubMed ID: 20506321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trends on Chlamydomonas reinhardtii growth regimes and bioproducts.
    Pessoa JDS; de Oliveira CFM; Mena-Chalco JP; de Carvalho JCM; Ferreira-Camargo LS
    Biotechnol Appl Biochem; 2023 Dec; 70(6):1830-1842. PubMed ID: 37337370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintenance and growth requirements in the metabolism of Debaryomyces hansenii performing xylose-to-xylitol bioconversion in corncob hemicellulose hydrolyzate.
    Rivas B; Torre P; Domínguez JM; Converti A
    Biotechnol Bioeng; 2009 Mar; 102(4):1062-73. PubMed ID: 18988265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO
    Banerjee S; Ray A; Das D
    Sci Total Environ; 2021 Mar; 762():143080. PubMed ID: 33162147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production.
    Kong QX; Li L; Martinez B; Chen P; Ruan R
    Appl Biochem Biotechnol; 2010 Jan; 160(1):9-18. PubMed ID: 19507059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: application to the green algae Chlamydomonas reinhardtii.
    Cogne G; Rügen M; Bockmayr A; Titica M; Dussap CG; Cornet JF; Legrand J
    Biotechnol Prog; 2011; 27(3):631-40. PubMed ID: 21567987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering astaxanthin accumulation reduces photoinhibition and increases biomass productivity under high light in Chlamydomonas reinhardtii.
    Cazzaniga S; Perozeni F; Baier T; Ballottari M
    Biotechnol Biofuels Bioprod; 2022 Jul; 15(1):77. PubMed ID: 35820961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Starch Production in
    Ivanov IN; Zachleder V; Vítová M; Barbosa MJ; Bišová K
    Cells; 2021 May; 10(5):. PubMed ID: 34062892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational comparison of mediated current generation capacity of Chlamydomonas reinhardtii in photosynthetic and respiratory growth modes.
    Mao L; Verwoerd WS
    J Biosci Bioeng; 2014 Nov; 118(5):565-74. PubMed ID: 24875305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light intensity and spectral quality modulation for improved growth kinetics and biochemical composition of Chlamydomonas reinhardtii.
    Li X; Huff J; Crunkleton DW; Johannes TW
    J Biotechnol; 2023 Sep; 375():28-39. PubMed ID: 37640267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High cell density cultivation enables efficient and sustainable recombinant polyamine production in the microalga Chlamydomonas reinhardtii.
    Freudenberg RA; Baier T; Einhaus A; Wobbe L; Kruse O
    Bioresour Technol; 2021 Mar; 323():124542. PubMed ID: 33385626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutritional influences on biomass behaviour and metabolic products by Chlamydomonas reinhardtii.
    de M Sousa L; de S Ferreira J; Cardoso VL; Batista FRX
    World J Microbiol Biotechnol; 2022 Apr; 38(6):96. PubMed ID: 35460020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Variable Light Source and Light Intensity on the Growth of Three Algal Species.
    Bialevich V; Zachleder V; Bišová K
    Cells; 2022 Apr; 11(8):. PubMed ID: 35455972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in Chlamydomonas reinhardtii.
    Goold HD; Cuiné S; Légeret B; Liang Y; Brugière S; Auroy P; Javot H; Tardif M; Jones B; Beisson F; Peltier G; Li-Beisson Y
    Plant Physiol; 2016 Aug; 171(4):2406-17. PubMed ID: 27297678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.