BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22427720)

  • 21. Metabolic engineering of
    Fonseca GG
    3 Biotech; 2022 Oct; 12(10):259. PubMed ID: 36068842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects.
    Carvalho AP; Silva SO; Baptista JM; Malcata FX
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1275-88. PubMed ID: 21181149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation and modeling of biomass decay rate in the dark and its potential influence on net productivity of solar photobioreactors for microalga Chlamydomonas reinhardtii and cyanobacterium Arthrospira platensis.
    Le Borgne F; Pruvost J
    Bioresour Technol; 2013 Jun; 138():271-6. PubMed ID: 23619140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant.
    Krishnan A; Kumaraswamy GK; Vinyard DJ; Gu H; Ananyev G; Posewitz MC; Dismukes GC
    Plant J; 2015 Mar; 81(6):947-60. PubMed ID: 25645872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response of energy microalgae Chlamydomonas reinhardtii to nitrogen and phosphorus stress.
    Wang Y; Yu J; Wang P; Deng S; Chang J; Ran Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5762-5770. PubMed ID: 29230652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii in a photobioreactor.
    Takache H; Pruvost J; Cornet JF
    Biotechnol Prog; 2012; 28(3):681-92. PubMed ID: 22467331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase partitioning of mercury, arsenic, selenium, and cadmium in Chlamydomonas reinhardtii and Arthrospira maxima microcosms.
    Lown L; Vernaz JE; Dunham-Cheatham SM; Gustin MS; Hiibel SR
    Environ Pollut; 2023 Jul; 329():121679. PubMed ID: 37088257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhythm of the Night (and Day): Predictive Metabolic Modeling of Diurnal Growth in
    Metcalf AJ; Boyle NR
    mSystems; 2022 Aug; 7(4):e0017622. PubMed ID: 35695419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Network reduction in metabolic pathway analysis: elucidation of the key pathways involved in the photoautotrophic growth of the green alga Chlamydomonas reinhardtii.
    Rügen M; Bockmayr A; Legrand J; Cogne G
    Metab Eng; 2012 Jul; 14(4):458-67. PubMed ID: 22342232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a
    Mora Salguero DA; Fernández-Niño M; Serrano-Bermúdez LM; Páez Melo DO; Winck FV; Caldana C; González Barrios AF
    PeerJ; 2018; 6():e5528. PubMed ID: 30202653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors.
    Takache H; Christophe G; Cornet JF; Pruvost J
    Biotechnol Prog; 2010; 26(2):431-40. PubMed ID: 19953604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LED alternating between blue and red-orange light improved the biomass and lipid productivity of Chlamydomonas reinhardtii.
    Li X; Huff J; Crunkleton DW; Johannes TW
    J Biotechnol; 2021 Nov; 341():96-102. PubMed ID: 34537254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photosynthetic efficiency of Chlamydomonas reinhardtii in attenuated, flashing light.
    Vejrazka C; Janssen M; Streefland M; Wijffels RH
    Biotechnol Bioeng; 2012 Oct; 109(10):2567-74. PubMed ID: 22510755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.
    Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii.
    Shtaida N; Khozin-Goldberg I; Solovchenko A; Chekanov K; Didi-Cohen S; Leu S; Cohen Z; Boussiba S
    J Exp Bot; 2014 Dec; 65(22):6563-76. PubMed ID: 25210079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling Neisseria meningitidis B metabolism at different specific growth rates.
    Baart GJ; Willemsen M; Khatami E; de Haan A; Zomer B; Beuvery EC; Tramper J; Martens DE
    Biotechnol Bioeng; 2008 Dec; 101(5):1022-35. PubMed ID: 18942773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions.
    Langner U; Jakob T; Stehfest K; Wilhelm C
    Plant Cell Environ; 2009 Mar; 32(3):250-8. PubMed ID: 19054351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO
    Seo SH; Ha JS; Yoo C; Srivastava A; Ahn CY; Cho DH; La HJ; Han MS; Oh HM
    Bioresour Technol; 2017 Nov; 244(Pt 1):621-628. PubMed ID: 28810216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoautotrophic cultures of Chlamydomonas reinhardtii: sulfur deficiency, anoxia, and hydrogen production.
    Grechanik V; Romanova A; Naydov I; Tsygankov A
    Photosynth Res; 2020 Mar; 143(3):275-286. PubMed ID: 31897856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased biomass productivity in green algae by tuning non-photochemical quenching.
    Berteotti S; Ballottari M; Bassi R
    Sci Rep; 2016 Feb; 6():21339. PubMed ID: 26888481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.