These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22427837)

  • 1. Fast retinal vessel detection and measurement using wavelets and edge location refinement.
    Bankhead P; Scholfield CN; McGeown JG; Curtis TM
    PLoS One; 2012; 7(3):e32435. PubMed ID: 22427837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation of blood vessels from red-free and fluorescein retinal images.
    Martinez-Perez ME; Hughes AD; Thom SA; Bharath AA; Parker KH
    Med Image Anal; 2007 Feb; 11(1):47-61. PubMed ID: 17204445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive Blood Vessel Segmentation from Retinal Fundus Image Based on Canny Edge Detector.
    Ooi AZH; Embong Z; Abd Hamid AI; Zainon R; Wang SL; Ng TF; Hamzah RA; Teoh SS; Ibrahim H
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image processing pipeline for the detection of blood flow through retinal vessels with subpixel accuracy in fundus images.
    Czepita M; FabijaƄska A
    Comput Methods Programs Biomed; 2021 Sep; 208():106240. PubMed ID: 34198018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood Vessel Segmentation of Fundus Retinal Images Based on Improved Frangi and Mathematical Morphology.
    Tian F; Li Y; Wang J; Chen W
    Comput Math Methods Med; 2021; 2021():4761517. PubMed ID: 34122614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmenting retinal vessels with revised top-bottom-hat transformation and flattening of minimum circumscribed ellipse.
    Wang W; Wang W; Hu Z
    Med Biol Eng Comput; 2019 Jul; 57(7):1481-1496. PubMed ID: 30903529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering.
    Tolias YA; Panas SM
    IEEE Trans Med Imaging; 1998 Apr; 17(2):263-73. PubMed ID: 9688158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative Vessel Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1738-49. PubMed ID: 25700436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of retinal vessel widths from fundus images based on 2-D modeling.
    Lowell J; Hunter A; Steel D; Basu A; Ryder R; Kennedy RL
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1196-204. PubMed ID: 15493688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated identification of retinal vessels using a multiscale directional contrast quantification (MDCQ) strategy.
    Zhen Y; Gu S; Meng X; Zhang X; Zheng B; Wang N; Pu J
    Med Phys; 2014 Sep; 41(9):092702. PubMed ID: 25186416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of retinal blood vessel detection using morphological component analysis.
    Imani E; Javidi M; Pourreza HR
    Comput Methods Programs Biomed; 2015 Mar; 118(3):263-79. PubMed ID: 25697986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving vessel segmentation in ultra-wide field-of-view retinal fluorescein angiograms.
    Perez-Rovira A; Zutis K; Hubschman JP; Trucco E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2614-7. PubMed ID: 22254877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding.
    Saleh MD; Eswaran C
    Comput Methods Biomech Biomed Engin; 2012; 15(5):517-25. PubMed ID: 21331960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis.
    Heneghan C; Flynn J; O'Keefe M; Cahill M
    Med Image Anal; 2002 Dec; 6(4):407-29. PubMed ID: 12426111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetic retinopathy: a quadtree based blood vessel detection algorithm using RGB components in fundus images.
    Reza AW; Eswaran C; Hati S
    J Med Syst; 2008 Apr; 32(2):147-55. PubMed ID: 18461818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction.
    Miri MS; Mahloojifar A
    IEEE Trans Biomed Eng; 2011 May; 58(5):1183-92. PubMed ID: 21147592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2015 May; 19(3):1118-28. PubMed ID: 25014980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal blood vessel width measured on color fundus photographs by image analysis.
    Wu DC; Schwartz B; Schwoerer J; Banwatt R
    Acta Ophthalmol Scand Suppl; 1995; (215):33-40. PubMed ID: 8846248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features.
    Marin D; Aquino A; Gegundez-Arias ME; Bravo JM
    IEEE Trans Med Imaging; 2011 Jan; 30(1):146-58. PubMed ID: 20699207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of morphological bit planes in retinal blood vessel extraction.
    Fraz MM; Basit A; Barman SA
    J Digit Imaging; 2013 Apr; 26(2):274-86. PubMed ID: 22832895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.