These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22428138)

  • 1. Carotenoid-binding proteins; accessories to carotenoid function.
    Pilbrow J; Garama D; Carne A
    Acta Biochim Pol; 2012; 59(1):163-5. PubMed ID: 22428138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fatty acid-binding protein-like carotenoid-binding protein from the gonad of the New Zealand sea urchin Evechinus chloroticus.
    Pilbrow J; Sabherwal M; Garama D; Carne A
    PLoS One; 2014; 9(9):e106465. PubMed ID: 25192378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction and analysis of carotenoids from the New Zealand sea urchin Evechinus chloroticus gonads.
    Garama D; Bremer P; Carne A
    Acta Biochim Pol; 2012; 59(1):83-5. PubMed ID: 22428140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotenoids in the sea urchin Paracentrotus lividus: occurrence of 9'-cis-echinenone as the dominant carotenoid in gonad colour determination.
    Symonds RC; Kelly MS; Caris-Veyrat C; Young AJ
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Dec; 148(4):432-44. PubMed ID: 17765578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of protein components from the mature ovary of the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea).
    Sewell MA; Eriksen S; Middleditch MJ
    Proteomics; 2008 Jun; 8(12):2531-42. PubMed ID: 18563751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene.
    Sakudoh T; Sezutsu H; Nakashima T; Kobayashi I; Fujimoto H; Uchino K; Banno Y; Iwano H; Maekawa H; Tamura T; Kataoka H; Tsuchida K
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8941-6. PubMed ID: 17496138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotenoids and carotenoproteins in Asellus aquaticus L. (Crustacea: Isopoda).
    Czeczuga B; Czeczuga-Semeniuk E; Semeniuk A
    Folia Biol (Krakow); 2005; 53(3-4):109-14. PubMed ID: 19058530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative ligands as probes for the carotenoid-binding site of lobster carapace crustacyanin.
    Clarke JB; Eliopoulos EE; Findlay JB; Zagalsky PF
    Biochem J; 1990 Feb; 265(3):919-21. PubMed ID: 2306227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete sequence and model for the C1 subunit of the carotenoprotein, crustacyanin, and model for the dimer, beta-crustacyanin, formed from the C1 and A2 subunits with astaxanthin.
    Keen JN; Caceres I; Eliopoulos EE; Zagalsky PF; Findlay JB
    Eur J Biochem; 1991 Nov; 202(1):31-40. PubMed ID: 1935978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsphere packages of carotenoids: intact sea urchin eggs tracked by Raman spectroscopy tools.
    Nekvapil F; Brezeştean I; Tomšić S; Müller C; Chiş V; Cintă Pinzaru S
    Photochem Photobiol Sci; 2019 Aug; 18(8):1933-1944. PubMed ID: 31169269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lobster carapace carotenoprotein, alpha-crustacyanin. A possible role for tryptophan in the bathochromic spectral shift of protein-bound astaxanthin.
    Zagalsky PF; Eliopoulos EE; Findlay JB
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):79-83. PubMed ID: 2001254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal changes in the carotenoids of the sea urchin Strongylocentrotus dröbachiensis.
    Griffiths M; Perrott P
    Comp Biochem Physiol B; 1976; 55(3B):435-41. PubMed ID: 975780
    [No Abstract]   [Full Text] [Related]  

  • 13. Vertebrate and invertebrate carotenoid-binding proteins.
    Bhosale P; Bernstein PS
    Arch Biochem Biophys; 2007 Feb; 458(2):121-7. PubMed ID: 17188641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the carotenoid-binding protein of the Y-gene dominant mutants of Bombyx mori.
    Tsuchida K; Jouni ZE; Gardetto J; Kobayashi Y; Tabunoki H; Azuma M; Sugiyama H; Takada N; Maekawa H; Banno Y; Fujii H; Iwano H; Wells MA
    J Insect Physiol; 2004 Apr; 50(4):363-72. PubMed ID: 15081829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotenoid-induced cooperative formation of bacterial photosynthetic LH1 complex.
    Fiedor L; Akahane J; Koyama Y
    Biochemistry; 2004 Dec; 43(51):16487-96. PubMed ID: 15610043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of carotenoid molecules on the structure of the bacteriochlorophyll binding site in peripheral light-harvesting proteins from Rhodobacter sphaeroides.
    Gall A; Cogdell RJ; Robert B
    Biochemistry; 2003 Jun; 42(23):7252-8. PubMed ID: 12795622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic properties of the carotenoid 3'-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima.
    Polívka T; Kerfeld CA; Pascher T; Sundström V
    Biochemistry; 2005 Mar; 44(10):3994-4003. PubMed ID: 15751975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos.
    Salaün P; Boulben S; Mulner-Lorillon O; Bellé R; Sonenberg N; Morales J; Cormier P
    J Cell Sci; 2005 Apr; 118(Pt 7):1385-94. PubMed ID: 15769855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method for screening a vertebrate transcriptome for genes involved in carotenoid binding and metabolism.
    Pointer MA; Prager M; Andersson S; Mundy NI
    Mol Ecol Resour; 2012 Jan; 12(1):149-59. PubMed ID: 21951614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential for cryopreserving larvae of the sea urchin, Evechinus chloroticus.
    Adams SL; Hessian PA; Mladenov PV
    Cryobiology; 2006 Feb; 52(1):139-45. PubMed ID: 16321369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.