These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 22428409)

  • 1. Self-control of task difficulty during training enhances motor learning of a complex coincidence-anticipation task.
    Andrieux M; Danna J; Thon B
    Res Q Exerc Sport; 2012 Mar; 83(1):27-35. PubMed ID: 22428409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Control of Task Difficulty During Early Practice Promotes Motor Skill Learning.
    Andrieux M; Boutin A; Thon B
    J Mot Behav; 2016; 48(1):57-65. PubMed ID: 25961604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Summary knowledge of results and task processing load.
    Guay M; Salmoni A; Lajoie Y
    Res Q Exerc Sport; 1997 Jun; 68(2):167-71. PubMed ID: 9200251
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of task practice order on motor skill learning in adults with Parkinson disease: a pilot study.
    Lin CH; Sullivan KJ; Wu AD; Kantak S; Winstein CJ
    Phys Ther; 2007 Sep; 87(9):1120-31. PubMed ID: 17609332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement and generalization of arm motor performance through motor imagery practice.
    Gentili R; Papaxanthis C; Pozzo T
    Neuroscience; 2006 Feb; 137(3):761-72. PubMed ID: 16338093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of physical guidance and knowledge of results on motor learning: support for the guidance hypothesis.
    Winstein CJ; Pohl PS; Lewthwaite R
    Res Q Exerc Sport; 1994 Dec; 65(4):316-23. PubMed ID: 7886280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor learning benefits of self-controlled practice in persons with Parkinson's disease.
    Chiviacowsky S; Wulf G; Lewthwaite R; Campos T
    Gait Posture; 2012 Apr; 35(4):601-5. PubMed ID: 22209649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback schedules for motor-skill learning: the similarities and differences between physical and observational practice.
    Badets A; Blandin Y
    J Mot Behav; 2010; 42(4):257-68. PubMed ID: 20862778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OPTIMAL practice conditions enhance the benefits of gradually increasing error opportunities on retention of a stepping sequence task.
    Levac D; Driscoll K; Galvez J; Mercado K; O'Neil L
    Hum Mov Sci; 2017 Dec; 56(Pt B):129-138. PubMed ID: 29128736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choose to move: The motivational impact of autonomy support on motor learning.
    Lewthwaite R; Chiviacowsky S; Drews R; Wulf G
    Psychon Bull Rev; 2015 Oct; 22(5):1383-8. PubMed ID: 25732095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-regulated frequency of augmented information in skill learning.
    Patterson JT; Lee TD
    Can J Exp Psychol; 2010 Mar; 64(1):33-40. PubMed ID: 20384416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing different model types interspersed with physical practice has no effect on consolidation or motor learning of an elbow flexion-extension task.
    Moore CM; Lelievre N; Ste-Marie DM
    Hum Mov Sci; 2019 Feb; 63():96-107. PubMed ID: 30508690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the cognitive processes underlying contextual interference: Contributions of practice schedule, task similarity and amount of practice.
    Boutin A; Blandin Y
    Hum Mov Sci; 2010 Dec; 29(6):910-20. PubMed ID: 20822819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of contextual interference on acquisition and retention of three volleyball skills.
    Jones LL; French KE
    Percept Mot Skills; 2007 Dec; 105(3 Pt 1):883-90. PubMed ID: 18229542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learner-controlled practice difficulty in the training of a complex task: cognitive and motivational mechanisms.
    Hughes MG; Day EA; Wang X; Schuelke MJ; Arsenault ML; Harkrider LN; Cooper OD
    J Appl Psychol; 2013 Jan; 98(1):80-98. PubMed ID: 22925045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the dynamic nature of contextual interference: previous experience affects current practice but not learning.
    Hodges NJ; Lohse KR; Wilson A; Lim SB; Mulligan D
    J Mot Behav; 2014; 46(6):455-67. PubMed ID: 25226441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of knowledge of results (KR) frequency in the learning of a timing skill: absolute versus relative KR frequency.
    Vieira MM; Ugrinowitsch H; Oliveira FS; Gallo LG; Benda RN
    Percept Mot Skills; 2012 Oct; 115(2):360-9. PubMed ID: 23265002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How persistent and general is the contextual interference effect?
    Russell DM; Newell KM
    Res Q Exerc Sport; 2007 Sep; 78(4):318-27. PubMed ID: 17941536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-controlled use of a perceived physical assistance device during a balancing task.
    Hartman JM
    Percept Mot Skills; 2007 Jun; 104(3 Pt 1):1005-16. PubMed ID: 17688157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOTOR IMAGERY, PHYSICAL PRACTICE, AND MEMORY: THE EFFECTS ON PERFORMANCE AND WORKLOAD.
    Raisbeck LD; Diekfuss JA; Wyatt W; Shea JB
    Percept Mot Skills; 2015 Dec; 121(3):691-705. PubMed ID: 26595199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.