BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 22428797)

  • 1. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities.
    Waite CL; Roth CM
    Crit Rev Biomed Eng; 2012; 40(1):21-41. PubMed ID: 22428797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid-enveloped hybrid nanoparticles for drug delivery.
    Tan S; Li X; Guo Y; Zhang Z
    Nanoscale; 2013 Feb; 5(3):860-72. PubMed ID: 23292080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a 'golden gate' for nanomedicine in preclinical studies?
    Gawali P; Saraswat A; Bhide S; Gupta S; Patel K
    Nanomedicine (Lond); 2023 Jan; 18(2):169-190. PubMed ID: 37042320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology.
    Prabhakar U; Maeda H; Jain RK; Sevick-Muraca EM; Zamboni W; Farokhzad OC; Barry ST; Gabizon A; Grodzinski P; Blakey DC
    Cancer Res; 2013 Apr; 73(8):2412-7. PubMed ID: 23423979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential drug delivery nanosystems for improving tumor penetration.
    Peng F; Li R; Zhang F; Qin L; Ling G; Zhang P
    Eur J Pharm Biopharm; 2020 Jun; 151():220-238. PubMed ID: 32311427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor heterogeneity and nanoparticle-mediated tumor targeting: the importance of delivery system personalization.
    Swetha KL; Roy A
    Drug Deliv Transl Res; 2018 Oct; 8(5):1508-1526. PubMed ID: 30128797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles.
    Niu Y; Zhu J; Li Y; Shi H; Gong Y; Li R; Huo Q; Ma T; Liu Y
    J Control Release; 2018 May; 277():35-47. PubMed ID: 29545106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging strategies against tumor-associated fibroblast for improved the penetration of nanoparticle into desmoplastic tumor.
    Yunna C; Mengru H; Fengling W; Lei W; Weidong C
    Eur J Pharm Biopharm; 2021 Aug; 165():75-83. PubMed ID: 33991610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors.
    Stylianopoulos T
    Ther Deliv; 2013 Apr; 4(4):421-3. PubMed ID: 23557281
    [No Abstract]   [Full Text] [Related]  

  • 14. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.
    Greish K
    J Drug Target; 2007; 15(7-8):457-64. PubMed ID: 17671892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug self-delivery systems for cancer therapy.
    Qin SY; Zhang AQ; Cheng SX; Rong L; Zhang XZ
    Biomaterials; 2017 Jan; 112():234-247. PubMed ID: 27768976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomedicine for the treatment of triple-negative breast cancer.
    Kutty RV; Wei Leong DT; Feng SS
    Nanomedicine (Lond); 2014 Apr; 9(5):561-4. PubMed ID: 24827837
    [No Abstract]   [Full Text] [Related]  

  • 17. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise.
    Bharali DJ; Mousa SA
    Pharmacol Ther; 2010 Nov; 128(2):324-35. PubMed ID: 20705093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The holistic 3M modality of drug delivery nanosystems for cancer therapy.
    Sun J; Luo C; Wang Y; He Z
    Nanoscale; 2013 Feb; 5(3):845-59. PubMed ID: 23292001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy.
    Glass SB; Gonzalez-Fajardo L; Beringhs AO; Lu X
    Antioxid Redox Signal; 2019 Feb; 30(5):747-761. PubMed ID: 28990403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.