BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22428847)

  • 1. pH-Sensitive surfactants from lysine: assessment of their cytotoxicity and environmental behavior.
    Colomer A; Pinazo A; García MT; Mitjans M; Vinardell MP; Infante MR; Martínez V; Pérez L
    Langmuir; 2012 Apr; 28(14):5900-12. PubMed ID: 22428847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties.
    Garcia MT; Kaczerewska O; Ribosa I; Brycki B; Materna P; Drgas M
    Chemosphere; 2016 Jul; 154():155-160. PubMed ID: 27045632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities.
    Colomer A; Pinazo A; Manresa MA; Vinardell MP; Mitjans M; Infante MR; Pérez L
    J Med Chem; 2011 Feb; 54(4):989-1002. PubMed ID: 21229984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradability and aquatic toxicity of new cleavable betainate cationic oligomeric surfactants.
    Garcia MT; Ribosa I; Kowalczyk I; Pakiet M; Brycki B
    J Hazard Mater; 2019 Jun; 371():108-114. PubMed ID: 30849564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.
    Nogueira DR; Mitjans M; Busquets MA; Pérez L; Vinardell MP
    Langmuir; 2012 Aug; 28(32):11687-98. PubMed ID: 22816661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationic surfactants from lysine: synthesis, micellization and biological evaluation.
    Pérez L; Pinazo A; Teresa García M; Lozano M; Manresa A; Angelet M; Pilar Vinardell M; Mitjans M; Pons R; Rosa Infante M
    Eur J Med Chem; 2009 May; 44(5):1884-92. PubMed ID: 19070403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological properties of arginine-based gemini cationic surfactants.
    Pérez L; García MT; Ribosa I; Vinardell MP; Manresa A; Infante MR
    Environ Toxicol Chem; 2002 Jun; 21(6):1279-85. PubMed ID: 12069315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-destabilizing activity of pH-responsive cationic lysine-based surfactants: role of charge position and alkyl chain length.
    Nogueira DR; Mitjans M; Morán MC; Pérez L; Vinardell MP
    Amino Acids; 2012 Sep; 43(3):1203-15. PubMed ID: 22134583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties.
    Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate and effects of amphoteric surfactants in the aquatic environment.
    Garcia MT; Campos E; Marsal A; Ribosa I
    Environ Int; 2008 Oct; 34(7):1001-5. PubMed ID: 18456334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradability and ecotoxicity of amine oxide based surfactants.
    García MT; Campos E; Ribosa I
    Chemosphere; 2007 Nov; 69(10):1574-8. PubMed ID: 17631946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment.
    García MT; Ribosa I; Guindulain T; Sánchez-Leal J; Vives-Rego J
    Environ Pollut; 2001; 111(1):169-75. PubMed ID: 11202711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.
    Nogueira DR; Mitjans M; Infante MR; Vinardell MP
    Acta Biomater; 2011 Jul; 7(7):2846-56. PubMed ID: 21421083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic toxicity of cationic surfactants to Daphnia magna.
    Roberts DW; Roberts JF; Hodges G; Gutsell S; Ward RS; Llewellyn C
    SAR QSAR Environ Res; 2013; 24(5):417-27. PubMed ID: 23557108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments.
    García MT; Campos E; Marsal A; Ribosa I
    Water Res; 2009 Feb; 43(2):295-302. PubMed ID: 18976786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New cationic nanovesicular systems containing lysine-based surfactants for topical administration: Toxicity assessment using representative skin cell lines.
    Nogueira DR; Morán MC; Mitjans M; Martínez V; Pérez L; Vinardell MP
    Eur J Pharm Biopharm; 2013 Jan; 83(1):33-43. PubMed ID: 23032312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.
    Tehrani-Bagha AR; Holmberg K; van Ginkel CG; Kean M
    J Colloid Interface Sci; 2015 Jul; 449():72-9. PubMed ID: 25446957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysine-based surfactants in nanovesicle formulations: the role of cationic charge position and hydrophobicity in in vitro cytotoxicity and intracellular delivery.
    Nogueira DR; del Carmen Morán M; Mitjans M; Pérez L; Ramos D; de Lapuente J; Pilar Vinardell M
    Nanotoxicology; 2014 Jun; 8(4):404-21. PubMed ID: 23560805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.
    Lechuga M; Fernández-Serrano M; Jurado E; Núñez-Olea J; Ríos F
    Ecotoxicol Environ Saf; 2016 Mar; 125():1-8. PubMed ID: 26650419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.
    Yamane M; Toyo T; Inoue K; Sakai T; Kaneko Y; Nishiyama N
    J Oleo Sci; 2008; 57(10):529-38. PubMed ID: 18781053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.