These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22428872)

  • 21. Rapid detection of carbapenemase activity of Enterobacteriaceae isolated from positive blood cultures by MALDI-TOF MS.
    Yu J; Liu J; Li Y; Yu J; Zhu W; Liu Y; Shen L
    Ann Clin Microbiol Antimicrob; 2018 May; 17(1):22. PubMed ID: 29776363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity Improvement and Vital Amino Acid Identification on the Marine-Derived Quorum Quenching Enzyme MomL by Protein Engineering.
    Wang J; Lin J; Zhang Y; Zhang J; Feng T; Li H; Wang X; Sun Q; Zhang X; Wang Y
    Mar Drugs; 2019 May; 17(5):. PubMed ID: 31117226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production.
    Fazius F; Zaehle C; Brock M
    Appl Microbiol Biotechnol; 2013 May; 97(9):3763-72. PubMed ID: 23504110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beta-lactam antibiotic resistance: a current structural perspective.
    Wilke MS; Lovering AL; Strynadka NC
    Curr Opin Microbiol; 2005 Oct; 8(5):525-33. PubMed ID: 16129657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expanded Substrate Activity of OXA-24/40 in Carbapenem-Resistant Acinetobacter baumannii Involves Enhanced Binding Loop Flexibility.
    Staude MW; Leonard DA; Peng JW
    Biochemistry; 2016 Nov; 55(47):6535-6544. PubMed ID: 27783477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Pseudomonas aeruginosa and beta-lactam antibiotics at the time of Europe].
    Cavallo JD; Mérens A
    Pathol Biol (Paris); 2008; 56(7-8):435-8. PubMed ID: 19019568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics.
    Sacha P; Wieczorek P; Hauschild T; Zórawski M; Olszańska D; Tryniszewska E
    Folia Histochem Cytobiol; 2008; 46(2):137-42. PubMed ID: 18519228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Negative Impact of Carbapenem Methylation on the Reactivity of β-Lactams for Cysteine Acylation as Revealed by Quantum Calculations and Kinetic Analyses.
    Bhattacharjee N; Triboulet S; Dubée V; Fonvielle M; Edoo Z; Hugonnet JE; Ethève-Quelquejeu M; Simorre JP; Field MJ; Arthur M; Bougault CM
    Antimicrob Agents Chemother; 2019 Apr; 63(4):. PubMed ID: 30718252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The enzymes of β-lactam biosynthesis.
    Hamed RB; Gomez-Castellanos JR; Henry L; Ducho C; McDonough MA; Schofield CJ
    Nat Prod Rep; 2013 Jan; 30(1):21-107. PubMed ID: 23135477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redefining penems.
    Dalhoff A; Janjic N; Echols R
    Biochem Pharmacol; 2006 Mar; 71(7):1085-95. PubMed ID: 16413506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Mechanisms of microorganism resistance to beta-lactam antibiotics].
    D'iachkova VS; Bazhukova TA
    Zh Mikrobiol Epidemiol Immunobiol; 2014; (4):101-9. PubMed ID: 25286539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of carbapenam synthetase (CarA).
    Miller MT; Gerratana B; Stapon A; Townsend CA; Rosenzweig AC
    J Biol Chem; 2003 Oct; 278(42):40996-1002. PubMed ID: 12890666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structures of biapenem and tebipenem complexed with penicillin-binding proteins 2X and 1A from Streptococcus pneumoniae.
    Yamada M; Watanabe T; Baba N; Takeuchi Y; Ohsawa F; Gomi S
    Antimicrob Agents Chemother; 2008 Jun; 52(6):2053-60. PubMed ID: 18391040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity.
    Fisher JF; Meroueh SO; Mobashery S
    Chem Rev; 2005 Feb; 105(2):395-424. PubMed ID: 15700950
    [No Abstract]   [Full Text] [Related]  

  • 35. Novel metagenome-derived carboxylesterase that hydrolyzes β-lactam antibiotics.
    Jeon JH; Kim SJ; Lee HS; Cha SS; Lee JH; Yoon SH; Koo BS; Lee CM; Choi SH; Lee SH; Kang SG; Lee JH
    Appl Environ Microbiol; 2011 Nov; 77(21):7830-6. PubMed ID: 21908637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origins of the β-lactam rings in natural products.
    Tahlan K; Jensen SE
    J Antibiot (Tokyo); 2013 Jul; 66(7):401-10. PubMed ID: 23531986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence Assessment of the AmpR-Signaling Network of
    Dik DA; Kim C; Madukoma CS; Fisher JF; Shrout JD; Mobashery S
    ACS Chem Biol; 2020 May; 15(5):1184-1194. PubMed ID: 31990176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural analysis of the sensor domain of the β-lactam antibiotic receptor VbrK from Vibrio parahaemolyticus.
    Cho SY; Yoon SI
    Biochem Biophys Res Commun; 2020 Nov; 533(1):155-161. PubMed ID: 32943185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.
    Chen X; Li Y; Zhang Y; Yang J; Bian L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Apr; 1051():75-83. PubMed ID: 28334649
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Barnes MD; Winkler ML; Taracila MA; Page MG; Desarbre E; Kreiswirth BN; Shields RK; Nguyen MH; Clancy C; Spellberg B; Papp-Wallace KM; Bonomo RA
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.