BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 22428952)

  • 21. Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability.
    Wei Y; Shohag MJ; Yang X; Yibin Z
    J Agric Food Chem; 2012 Nov; 60(45):11433-9. PubMed ID: 23083412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combination of High Zn Density and Low Phytic Acid for Improving Zn Bioavailability in Rice (Oryza stavia L.) Grain.
    Wang Y; Meng Y; Ma Y; Liu L; Wu D; Shu X; Pan L; Lai Q
    Rice (N Y); 2021 Feb; 14(1):23. PubMed ID: 33638799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/Caco-2 cell culture model.
    Cheng Z; Tako E; Yeung A; Welch RM; Glahn RP
    Food Funct; 2012 Jul; 3(7):732-6. PubMed ID: 22538397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron, zinc, and protein bioavailability proxy measures of meals prepared with nutritionally enhanced beans and maize.
    Pachón H; Ortiz DA; Araujo C; Blair MW; Restrepo J
    J Food Sci; 2009 Jun; 74(5):H147-54. PubMed ID: 19646048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zinc Absorption by Adults Is Similar from Intrinsically Labeled Zinc-Biofortified Rice and from Rice Fortified with Labeled Zinc Sulfate.
    Brnić M; Wegmüller R; Melse-Boonstra A; Stomph T; Zeder C; Tay FM; Hurrell RF
    J Nutr; 2016 Jan; 146(1):76-80. PubMed ID: 26674764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron and zinc bioavailabilities to pigs from red and white beans (Phaseolus vulgaris L.) are similar.
    Tako E; Glahn RP; Laparra JM; Welch RM; Lei X; Kelly JD; Rutzke MA; Miller DD
    J Agric Food Chem; 2009 Apr; 57(8):3134-40. PubMed ID: 19368350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seed coat removal improves iron bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model.
    DellaValle DM; Vandenberg A; Glahn RP
    J Agric Food Chem; 2013 Aug; 61(34):8084-9. PubMed ID: 23915260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects.
    Gupta PK; Balyan HS; Sharma S; Kumar R
    Theor Appl Genet; 2021 Jan; 134(1):1-35. PubMed ID: 33136168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer.
    Boyer J; Brown D; Liu RH
    Nutr J; 2005 Jan; 4():1. PubMed ID: 15644141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mineral biofortification strategies for food staples: the example of common bean.
    Blair MW
    J Agric Food Chem; 2013 Sep; 61(35):8287-94. PubMed ID: 23848266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability.
    Wei Y; Shohag MJ; Ying F; Yang X; Wu C; Wang Y
    Food Chem; 2013 Jun; 138(2-3):1952-8. PubMed ID: 23411330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nutritional evaluation of some Nigerian wild seeds.
    Oboh G; Ekperigin MM
    Nahrung; 2004 Apr; 48(2):85-7. PubMed ID: 15146961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The potential to improve zinc status through biofortification of staple food crops with zinc.
    Hotz C
    Food Nutr Bull; 2009 Mar; 30(1 Suppl):S172-8. PubMed ID: 19472606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breeding for micronutrients in staple food crops from a human nutrition perspective.
    Welch RM; Graham RD
    J Exp Bot; 2004 Feb; 55(396):353-64. PubMed ID: 14739261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chicken thigh, chicken liver, and iron-fortified wheat flour increase iron uptake in an in vitro digestion/Caco-2 cell model.
    Pachón H; Stoltzfus RJ; Glahn RP
    Nutr Res; 2008 Dec; 28(12):851-8. PubMed ID: 19083498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different Phosphorus Supplies Altered the Accumulations and Quantitative Distributions of Phytic Acid, Zinc, and Iron in Rice (Oryza sativa L.) Grains.
    Su D; Zhou L; Zhao Q; Pan G; Cheng F
    J Agric Food Chem; 2018 Feb; 66(7):1601-1611. PubMed ID: 29401375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.
    Liang J; Han BZ; Nout MJ; Hamer RJ
    Int J Food Sci Nutr; 2010 Feb; 61(1):40-51. PubMed ID: 19919509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of yeast and bran on phytate degradation and minerals in rice bread.
    Kadan RS; Phillippy BQ
    J Food Sci; 2007 May; 72(4):C208-11. PubMed ID: 17995762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of calcium salts, ascorbic acid and peptic pH on calcium, zinc and iron bioavailabilities from fortified human milk using an in vitro digestion/Caco-2 cell model.
    Etcheverry P; Wallingford JC; Miller DD; Glahn RP
    Int J Vitam Nutr Res; 2005 May; 75(3):171-8. PubMed ID: 16028632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low zinc, iron, and calcium intakes of Northeast Thai school children consuming glutinous rice-based diets are not exacerbated by high phytate.
    Krittaphol W; Bailey KB; Pongcharoen T; Winichagoon P; Gibson RS
    Int J Food Sci Nutr; 2006; 57(7-8):520-8. PubMed ID: 17162330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.