BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 22428987)

  • 1. Heat shock-induced biphasic Ca(2+) signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.).
    Wu HC; Luo DL; Vignols F; Jinn TL
    Plant Cell Environ; 2012 Sep; 35(9):1543-57. PubMed ID: 22428987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillation regulation of Ca2+ /calmodulin and heat-stress related genes in response to heat stress in rice (Oryza sativa L.).
    Wu HC; Jinn TL
    Plant Signal Behav; 2012 Sep; 7(9):1056-7. PubMed ID: 22899079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana.
    Liu HT; Gao F; Li GL; Han JL; Liu DL; Sun DY; Zhou RG
    Plant J; 2008 Sep; 55(5):760-73. PubMed ID: 18466301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.).
    Rana RM; Dong S; Tang H; Ahmad F; Zhang H
    J Exp Bot; 2012 Oct; 63(16):6003-16. PubMed ID: 22996677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis.
    Liu HT; Li GL; Chang H; Sun DY; Zhou RG; Li B
    Plant Cell Environ; 2007 Feb; 30(2):156-64. PubMed ID: 17238907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium signaling-mediated and differential induction of calmodulin gene expression by stress in Oryza sativa L.
    Phean-O-Pas S; Punteeranurak P; Buaboocha T
    J Biochem Mol Biol; 2005 Jul; 38(4):432-9. PubMed ID: 16053710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis transcriptional response to extracellular Ca2+ depletion involves a transient rise in cytosolic Ca2+.
    Wang J; Tergel T; Chen J; Yang J; Kang Y; Qi Z
    J Integr Plant Biol; 2015 Feb; 57(2):138-50. PubMed ID: 24850424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downstream components of the calmodulin signaling pathway in the rice salt stress response revealed by transcriptome profiling and target identification.
    Yuenyong W; Chinpongpanich A; Comai L; Chadchawan S; Buaboocha T
    BMC Plant Biol; 2018 Dec; 18(1):335. PubMed ID: 30518322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis.
    Zheng SZ; Liu YL; Li B; Shang ZL; Zhou RG; Sun DY
    Plant J; 2012 Feb; 69(4):689-700. PubMed ID: 22007900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analyses of changes in translation state caused by elevated temperature in Oryza sativa.
    Ueda K; Matsuura H; Yamaguchi M; Demura T; Kato K
    Plant Cell Physiol; 2012 Aug; 53(8):1481-91. PubMed ID: 22722767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance.
    Wu HC; Jinn TL
    Plant Signal Behav; 2010 Oct; 5(10):1252-6. PubMed ID: 20948293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants.
    Zhang J; Peng Y; Guo Z
    Cell Res; 2008 Apr; 18(4):508-21. PubMed ID: 18071364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses.
    Gu Z; Ma B; Jiang Y; Chen Z; Su X; Zhang H
    Gene; 2008 May; 415(1-2):1-12. PubMed ID: 18395997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca(2+) sensor in Arabidopsis.
    Bender KW; Dobney S; Ogunrinde A; Chiasson D; Mullen RT; Teresinski HJ; Singh P; Munro K; Smith SP; Snedden WA
    Biochem J; 2014 Jan; 457(1):127-36. PubMed ID: 24102643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance.
    Quan R; Hu S; Zhang Z; Zhang H; Zhang Z; Huang R
    Plant Biotechnol J; 2010 May; 8(4):476-88. PubMed ID: 20233336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth.
    Ogawa D; Yamaguchi K; Nishiuchi T
    J Exp Bot; 2007; 58(12):3373-83. PubMed ID: 17890230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice.
    Mito T; Seki M; Shinozaki K; Ohme-Takagi M; Matsui K
    Plant Biotechnol J; 2011 Sep; 9(7):736-46. PubMed ID: 21114612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism.
    Peña-Castro JM; van Zanten M; Lee SC; Patel MR; Voesenek LA; Fukao T; Bailey-Serres J
    Plant J; 2011 Aug; 67(3):434-46. PubMed ID: 21481028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance.
    Huang J; Wang MM; Jiang Y; Bao YM; Huang X; Sun H; Xu DQ; Lan HX; Zhang HS
    Gene; 2008 Sep; 420(2):135-44. PubMed ID: 18588956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.