These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22428998)

  • 1. High-throughput production and structural characterization of libraries of self-assembly lipidic cubic phase materials.
    Darmanin C; Conn CE; Newman J; Mulet X; Seabrook SA; Liang YL; Hawley A; Kirby N; Varghese JN; Drummond CJ
    ACS Comb Sci; 2012 Apr; 14(4):247-52. PubMed ID: 22428998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipidic sponge phase crystallization of membrane proteins.
    Wadsten P; Wöhri AB; Snijder A; Katona G; Gardiner AT; Cogdell RJ; Neutze R; Engström S
    J Mol Biol; 2006 Nov; 364(1):44-53. PubMed ID: 17005199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.
    Angelova A; Angelov B; Mutafchieva R; Lesieur S; Couvreur P
    Acc Chem Res; 2011 Feb; 44(2):147-56. PubMed ID: 21189042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism for the crystallization of bacteriorhodopsin in lipidic cubic phases.
    Nollert P; Qiu H; Caffrey M; Rosenbusch JP; Landau EM
    FEBS Lett; 2001 Aug; 504(3):179-86. PubMed ID: 11532451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-swelled lyotropic single crystals.
    Kim H; Song Z; Leal C
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10834-10839. PubMed ID: 28973884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization in lipidic cubic phases: a case study with bacteriorhodopsin.
    Gordeliy VI; Schlesinger R; Efremov R; Büldt G; Heberle J
    Methods Mol Biol; 2003; 228():305-16. PubMed ID: 12824562
    [No Abstract]   [Full Text] [Related]  

  • 7. It's not just a phase: crystallization and X-ray structure determination of bacteriorhodopsin in lipidic cubic phases.
    Gouaux E
    Structure; 1998 Jan; 6(1):5-10. PubMed ID: 9493262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions: the effect of lipid composition.
    Yaghmur A; Rappolt M; Østergaard J; Larsen C; Larsen SW
    Langmuir; 2012 Feb; 28(5):2881-9. PubMed ID: 22247936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detergents destabilize the cubic phase of monoolein: implications for membrane protein crystallization.
    Misquitta Y; Caffrey M
    Biophys J; 2003 Nov; 85(5):3084-96. PubMed ID: 14581209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipidic cubic phases as matrices for membrane protein crystallization.
    Nollert P
    Methods; 2004 Nov; 34(3):348-53. PubMed ID: 15325652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation and specific interactions of nucleotides and nucleolipids inside monoolein-based liquid crystals.
    Murgia S; Lampis S; Angius R; Berti D; Monduzzi M
    J Phys Chem B; 2009 Jul; 113(27):9205-15. PubMed ID: 19569723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase behavior of a designed cyclopropyl analogue of monoolein: implications for low-temperature membrane protein crystallization.
    Salvati Manni L; Zabara A; Osornio YM; Schöppe J; Batyuk A; Plückthun A; Siegel JS; Mezzenga R; Landau EM
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):1027-31. PubMed ID: 25418121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases.
    Li D; Boland C; Walsh K; Caffrey M
    J Vis Exp; 2012 Sep; (67):e4000. PubMed ID: 22971907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of lipid for membrane protein crystallization.
    Misquitta Y; Cherezov V; Havas F; Patterson S; Mohan JM; Wells AJ; Hart DJ; Caffrey M
    J Struct Biol; 2004 Nov; 148(2):169-75. PubMed ID: 15477097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-Dependent Encapsulation and Release of dsDNA from Cationic Lyotropic Liquid Crystalline Cubic Phases.
    Sarkar S; Tran N; Soni SK; Conn CE; Drummond CJ
    ACS Biomater Sci Eng; 2020 Aug; 6(8):4401-4413. PubMed ID: 33455184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of the butyrate receptors, GPR41 and GPR43, in lipidic bicontinuous cubic phases suitable for in meso crystallization.
    Liang YL; Conn CE; Drummond CJ; Darmanin C
    J Colloid Interface Sci; 2015 Mar; 441():78-84. PubMed ID: 25490566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Cell Membrane Biomimetic Lipidic Cubic Phases: A High-Throughput Exploration of Lipid Compositional Space.
    Sarkar S; Tran N; Rashid MH; Le TC; Yarovsky I; Conn CE; Drummond CJ
    ACS Appl Bio Mater; 2019 Jan; 2(1):182-195. PubMed ID: 35016341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-jump X-ray studies of liquid crystal transitions in lipids.
    Seddon JM; Squires AM; Conn CE; Ces O; Heron AJ; Mulet X; Shearman GC; Templer RH
    Philos Trans A Math Phys Eng Sci; 2006 Oct; 364(1847):2635-55. PubMed ID: 16973480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid Liquid-Crystal Phase Change Induced through near-Infrared Irradiation of Entrained Graphene Particles.
    Quinn MD; Du J; Boyd BJ; Hawley A; Notley SM
    Langmuir; 2015 Jun; 31(24):6605-9. PubMed ID: 26058715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the effect of sugar stereochemistry on biologically relevant lyotropic phases from branched-chain synthetic glycolipids by small-angle X-ray scattering.
    Zahid NI; Conn CE; Brooks NJ; Ahmad N; Seddon JM; Hashim R
    Langmuir; 2013 Dec; 29(51):15794-804. PubMed ID: 24274824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.