BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22429088)

  • 21. Multistep current signal in protein translocation through graphene nanopores.
    Bonome EL; Lepore R; Raimondo D; Cecconi F; Tramontano A; Chinappi M
    J Phys Chem B; 2015 May; 119(18):5815-23. PubMed ID: 25866995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relevance of the Speed and Direction of Pulling in Simple Modular Proteins.
    Plata CA; Scholl ZN; Marszalek PE; Prados A
    J Chem Theory Comput; 2018 Jun; 14(6):2910-2918. PubMed ID: 29771510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient single-molecule fluorescence resonance energy transfer analysis by site-specific dual-labeling of protein using an unnatural amino acid.
    Seo MH; Lee TS; Kim E; Cho YL; Park HS; Yoon TY; Kim HS
    Anal Chem; 2011 Dec; 83(23):8849-54. PubMed ID: 22035235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein unfolding through nanopores.
    Oukhaled A; Pastoriza-Gallego M; Bacri L; Mathé J; Auvray L; Pelta J
    Protein Pept Lett; 2014 Mar; 21(3):266-74. PubMed ID: 24370253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The importance of adding EDTA for the nanopore analysis of proteins.
    Krasniqi B; Lee JS
    Metallomics; 2012 Jun; 4(6):539-44. PubMed ID: 22544081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical unfoldons as building blocks of maltose-binding protein.
    Bertz M; Rief M
    J Mol Biol; 2008 Apr; 378(2):447-58. PubMed ID: 18355837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein translocation in narrow pores: inferring bottlenecks from native structure topology.
    Bacci M; Chinappi M; Casciola CM; Cecconi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022712. PubMed ID: 24032869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Langevin dynamics simulations of ds-DNA translocation through synthetic nanopores.
    Forrey C; Muthukumar M
    J Chem Phys; 2007 Jul; 127(1):015102. PubMed ID: 17627369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A statistical model for translocation of structured polypeptide chains through nanopores.
    Ammenti A; Cecconi F; Marini Bettolo Marconi U; Vulpiani A
    J Phys Chem B; 2009 Jul; 113(30):10348-56. PubMed ID: 19572676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of the Villin headpiece folding dynamics by combining coarse-grained Monte Carlo evolution and all-atom molecular dynamics.
    De Mori GM; Colombo G; Micheletti C
    Proteins; 2005 Feb; 58(2):459-71. PubMed ID: 15521059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Memory effects during the unbiased translocation of a polymer through a nanopore.
    de Haan HW; Slater GW
    J Chem Phys; 2012 Apr; 136(15):154903. PubMed ID: 22519346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic characterization of the reversible, two-state unfolding of maltose binding protein, a large two-domain protein.
    Ganesh C; Shah AN; Swaminathan CP; Surolia A; Varadarajan R
    Biochemistry; 1997 Apr; 36(16):5020-8. PubMed ID: 9125524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical analysis and kinetic modeling of the thermal inactivation of MBP-fused heparinase I: implications for a comprehensive thermostabilization strategy.
    Chen S; Ye F; Chen Y; Chen Y; Zhao H; Yatsunami R; Nakamura S; Arisaka F; Xing XH
    Biotechnol Bioeng; 2011 Aug; 108(8):1841-51. PubMed ID: 21445884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.
    Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A
    Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Translocation of polymers with folded configurations across nanopores.
    Kotsev S; Kolomeisky AB
    J Chem Phys; 2007 Nov; 127(18):185103. PubMed ID: 18020666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites.
    Cuneo MJ; Changela A; Warren JJ; Beese LS; Hellinga HW
    J Mol Biol; 2006 Sep; 362(2):259-70. PubMed ID: 16904687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct observation of chaperone-induced changes in a protein folding pathway.
    Bechtluft P; van Leeuwen RG; Tyreman M; Tomkiewicz D; Nouwen N; Tepper HL; Driessen AJ; Tans SJ
    Science; 2007 Nov; 318(5855):1458-61. PubMed ID: 18048690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module.
    Li L; Huang HH; Badilla CL; Fernandez JM
    J Mol Biol; 2005 Jan; 345(4):817-26. PubMed ID: 15588828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force.
    Oukhaled A; Cressiot B; Bacri L; Pastoriza-Gallego M; Betton JM; Bourhis E; Jede R; Gierak J; Auvray L; Pelta J
    ACS Nano; 2011 May; 5(5):3628-38. PubMed ID: 21476590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.