These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22429088)

  • 41. Conformations, dynamics and interactions of di-, tri- and pentamannoside with mannose binding lectin: a molecular dynamics study.
    Mazumder P; Mukhopadhyay C
    Carbohydr Res; 2012 Feb; 349():59-72. PubMed ID: 22236774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploration of multi-state conformational dynamics and underlying global functional landscape of maltose binding protein.
    Wang Y; Tang C; Wang E; Wang J
    PLoS Comput Biol; 2012; 8(4):e1002471. PubMed ID: 22532792
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamics of colloids in single solid-state nanopores.
    Bacri L; Oukhaled AG; Schiedt B; Patriarche G; Bourhis E; Gierak J; Pelta J; Auvray L
    J Phys Chem B; 2011 Mar; 115(12):2890-8. PubMed ID: 21391631
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field.
    Pizzolato N; Fiasconaro A; Adorno DP; Spagnolo B
    Phys Biol; 2010 Aug; 7(3):034001. PubMed ID: 20686190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Establishment of a mouse IgA nephropathy model with the MBP-20-peptide fusion protein.
    Zhang L; Ye F; He Y; Kong D; Han C; Zhao Z; Zhu J; Meng H; Liu X; Jin X
    Anat Rec (Hoboken); 2010 Oct; 293(10):1729-37. PubMed ID: 20730864
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computer simulations and theory of protein translocation.
    Makarov DE
    Acc Chem Res; 2009 Feb; 42(2):281-9. PubMed ID: 19072704
    [TBL] [Abstract][Full Text] [Related]  

  • 48. LuMPIS: luciferase-based MBP-pull-down protein interaction screening system.
    Pinto MG; Baiker A
    Methods Mol Biol; 2012; 815():265-75. PubMed ID: 22130998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive Steered Molecular Dynamics of the Long-Distance Unfolding of Neuropeptide Y.
    Ozer G; Valeev EF; Quirk S; Hernandez R
    J Chem Theory Comput; 2010 Oct; 6(10):3026-38. PubMed ID: 26616767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational and theoretical insights into protein and peptide translocation.
    Makarov DE
    Protein Pept Lett; 2014 Mar; 21(3):217-26. PubMed ID: 24370258
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Topological dynamics in supramolecular rotors.
    Palma CA; Björk J; Rao F; Kühne D; Klappenberger F; Barth JV
    Nano Lett; 2014 Aug; 14(8):4461-8. PubMed ID: 25078022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Structure and composition of denaturated bile proteins].
    DIETRICH KF; WALLRAFF J
    Klin Wochenschr; 1958 Nov; 36(21):1023-8. PubMed ID: 13612099
    [No Abstract]   [Full Text] [Related]  

  • 53. Placement of oppositely charged aminoacids at a polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores.
    Asandei A; Chinappi M; Lee JK; Ho Seo C; Mereuta L; Park Y; Luchian T
    Sci Rep; 2015 Jun; 5():10419. PubMed ID: 26029865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Macromolecular mechanisms of protein translocation.
    Muthukumar M
    Protein Pept Lett; 2014 Mar; 21(3):209-16. PubMed ID: 24370256
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of denaturation in maltose binding protein translocation dynamics.
    Bacci M; Chinappi M; Casciola CM; Cecconi F
    J Phys Chem B; 2012 Apr; 116(14):4255-62. PubMed ID: 22429088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring the Unfolding Pathway of Maltose Binding Proteins: An Integrated Computational Approach.
    Guardiani C; Marino DD; Tramontano A; Chinappi M; Cecconi F
    J Chem Theory Comput; 2014 Sep; 10(9):3589-97. PubMed ID: 26588503
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mapping the conformational stability of maltose binding protein at the residue scale using nuclear magnetic resonance hydrogen exchange experiments.
    Merstorf C; Maciejak O; Mathé J; Pastoriza-Gallego M; Thiebot B; Clément MJ; Pelta J; Auvray L; Curmi PA; Savarin P
    Biochemistry; 2012 Nov; 51(44):8919-30. PubMed ID: 23046344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein transport across nanopores: a statistical mechanical perspective from coarse-grained modeling and approaches.
    Cecconi F; Bacci M; Chinappi M
    Protein Pept Lett; 2014 Mar; 21(3):227-34. PubMed ID: 24370254
    [TBL] [Abstract][Full Text] [Related]  

  • 59. How maltose influences structural changes to bind to maltose-binding protein: results from umbrella sampling simulation.
    Mascarenhas NM; Kästner J
    Proteins; 2013 Feb; 81(2):185-98. PubMed ID: 22933379
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA unzipping and protein unfolding using nanopores.
    Merstorf C; Cressiot B; Pastoriza-Gallego M; Oukhaled AG; Bacri L; Gierak J; Pelta J; Auvray L; Mathé J
    Methods Mol Biol; 2012; 870():55-75. PubMed ID: 22528258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.