These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22429115)

  • 1. Visualizing electrical breakdown and ON/OFF states in electrically switchable suspended graphene break junctions.
    Zhang H; Bao W; Zhao Z; Huang JW; Standley B; Liu G; Wang F; Kratz P; Jing L; Bockrath M; Lau CN
    Nano Lett; 2012 Apr; 12(4):1772-5. PubMed ID: 22429115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling the tunneling phenomena in graphene-graphene homo-junctions for emerging device applications.
    Kaur A; Singh RC
    J Phys Condens Matter; 2019 Nov; 31(47):475303. PubMed ID: 31394514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical Breakdown of Suspended Mono- and Few-Layer Tungsten Disulfide via Sulfur Depletion Identified by in Situ Atomic Imaging.
    Fan Y; Robertson AW; Zhou Y; Chen Q; Zhang X; Browning ND; Zheng H; Rümmeli MH; Warner JH
    ACS Nano; 2017 Sep; 11(9):9435-9444. PubMed ID: 28829575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly conducting graphene sheets and Langmuir-Blodgett films.
    Li X; Zhang G; Bai X; Sun X; Wang X; Wang E; Dai H
    Nat Nanotechnol; 2008 Sep; 3(9):538-42. PubMed ID: 18772914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilevel Nonvolatile Memristive and Memcapacitive Switching in Stacked Graphene Sheets.
    Park M; Park S; Yoo KH
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14046-52. PubMed ID: 27203557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene and its derivatives: switching ON and OFF.
    Chen Y; Zhang B; Liu G; Zhuang X; Kang ET
    Chem Soc Rev; 2012 Jul; 41(13):4688-707. PubMed ID: 22648376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative differential resistance effect in planar graphene nanoribbon break junctions.
    Nguyen PD; Nguyen TC; Hossain FM; Huynh DH; Evans R; Skafidas E
    Nanoscale; 2015 Jan; 7(1):289-93. PubMed ID: 25406934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic modulation of the Fermi energy in suspended graphene backgated devices.
    Dawood OM; Gupta RK; Monteverde U; Alqahtani FH; Kim HY; Sexton J; Young RJ; Missous M; Migliorato MA
    Sci Technol Adv Mater; 2019; 20(1):568-579. PubMed ID: 31231447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switching Behaviors of Graphene-Boron Nitride Nanotube Heterojunctions.
    Parashar V; Durand CP; Hao B; Amorim RG; Pandey R; Tiwari B; Zhang D; Liu Y; Li AP; Yap YK
    Sci Rep; 2015 Jul; 5():12238. PubMed ID: 26192733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Side-Group-Mediated Mechanical Conductance Switching in Molecular Junctions.
    Ismael AK; Wang K; Vezzoli A; Al-Khaykanee MK; Gallagher HE; Grace IM; Lambert CJ; Xu B; Nichols RJ; Higgins SJ
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15378-15382. PubMed ID: 29044889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical transport and breakdown in graphene multilayers loaded with electron beam induced deposited platinum.
    Kulshrestha N; Misra A; Koratkar N; Misra DS
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3424-30. PubMed ID: 23489064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing graphene based sheets by fluorescence quenching microscopy.
    Kim J; Cote LJ; Kim F; Huang J
    J Am Chem Soc; 2010 Jan; 132(1):260-7. PubMed ID: 19961229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric-Screening Reduction-Induced Large Transport Gap in Suspended Sub-10 nm Graphene Nanoribbon Functional Devices.
    Schmidt ME; Muruganathan M; Kanzaki T; Iwasaki T; Hammam AMM; Suzuki S; Ogawa S; Mizuta H
    Small; 2019 Nov; 15(46):e1903025. PubMed ID: 31573772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ observation of electrostatic and thermal manipulation of suspended graphene membranes.
    Bao W; Myhro K; Zhao Z; Chen Z; Jang W; Jing L; Miao F; Zhang H; Dames C; Lau CN
    Nano Lett; 2012 Nov; 12(11):5470-4. PubMed ID: 23043470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors.
    Lin MW; Ling C; Zhang Y; Yoon HJ; Cheng MM; Agapito LA; Kioussis N; Widjaja N; Zhou Z
    Nanotechnology; 2011 Jul; 22(26):265201. PubMed ID: 21576804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry transfer method for suspended graphene on lift-off-resist: simple ballistic devices with Fabry-Pérot interference.
    Liu Y; Abhilash TS; Laitinen A; Tan Z; Liu GJ; Hakonen P
    Nanotechnology; 2019 Jun; 30(25):25LT01. PubMed ID: 30840930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-graphene oxide floating gate transistor memory.
    Jang S; Hwang E; Lee JH; Park HS; Cho JH
    Small; 2015 Jan; 11(3):311-8. PubMed ID: 25163911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study.
    Benz R; Beckers F; Zimmermann U
    J Membr Biol; 1979 Jul; 48(2):181-204. PubMed ID: 480336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaching ballistic transport in suspended graphene.
    Du X; Skachko I; Barker A; Andrei EY
    Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.