These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 22429275)
1. Opsin gene sequence variation across phylogenetic and population histories in Mysis (Crustacea: Mysida) does not match current light environments or visual-pigment absorbance spectra. Audzijonyte A; Pahlberg J; Viljanen M; Donner K; Väinölä R Mol Ecol; 2012 May; 21(9):2176-96. PubMed ID: 22429275 [TBL] [Abstract][Full Text] [Related]
2. Visual pigment absorbance and spectral sensitivity of the Mysis relicta species group (Crustacea, Mysida) in different light environments. Jokela-Määttä M; Pahlberg J; Lindström M; Zak PP; Porter M; Ostrovsky MA; Cronin TW; Donner K J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Dec; 191(12):1087-97. PubMed ID: 16133501 [TBL] [Abstract][Full Text] [Related]
3. Lake and sea populations of Mysis relicta (Crustacea, Mysida) with different visual-pigment absorbance spectra use the same A1 chromophore. Belikov N; Yakovleva M; Feldman T; Demina O; Khodonov A; Lindström M; Donner K; Ostrovsky M PLoS One; 2014; 9(2):e88107. PubMed ID: 24516590 [TBL] [Abstract][Full Text] [Related]
4. Phylogeographic analyses of a circumarctic coastal and a boreal lacustrine mysid crustacean, and evidence of fast postglacial mtDNA rates. Audzijonyte A; Väinölä R Mol Ecol; 2006 Oct; 15(11):3287-301. PubMed ID: 16968271 [TBL] [Abstract][Full Text] [Related]
5. Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins. Porter ML; Cronin TW; McClellan DA; Crandall KA Mol Biol Evol; 2007 Jan; 24(1):253-68. PubMed ID: 17053049 [TBL] [Abstract][Full Text] [Related]
6. Visual pigments of Baltic Sea fishes of marine and limnic origin. Jokela-Määttä M; Smura T; Aaltonen A; Ala-Laurila P; Donner K Vis Neurosci; 2007; 24(3):389-98. PubMed ID: 17822578 [TBL] [Abstract][Full Text] [Related]
7. Individual variation in rod absorbance spectra correlated with opsin gene polymorphism in sand goby (Pomatoschistus minutus). Jokela-Määttä M; Vartio A; Paulin L; Donner K J Exp Biol; 2009 Nov; 212(Pt 21):3415-21. PubMed ID: 19837882 [TBL] [Abstract][Full Text] [Related]
8. Eye spectral sensitivity in fresh- and brackish-water populations of three glacial-relict Mysis species (Crustacea): physiology and genetics of differential tuning. Donner K; Zak P; Viljanen M; Lindström M; Feldman T; Ostrovsky M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Apr; 202(4):297-312. PubMed ID: 26984686 [TBL] [Abstract][Full Text] [Related]
9. Molecular diversity of visual pigments in Stomatopoda (Crustacea). Porter ML; Bok MJ; Robinson PR; Cronin TW Vis Neurosci; 2009; 26(3):255-65. PubMed ID: 19534844 [TBL] [Abstract][Full Text] [Related]
10. Comparative phylogeography of two North American 'glacial relict' crustaceans. Dooh RT; Adamowicz SJ; Hebert PD Mol Ecol; 2006 Dec; 15(14):4459-75. PubMed ID: 17107476 [TBL] [Abstract][Full Text] [Related]
11. Spectral tuning by selective chromophore uptake in rods and cones of eight populations of nine-spined stickleback (Pungitius pungitius). Saarinen P; Pahlberg J; Herczeg G; Viljanen M; Karjalainen M; Shikano T; Merilä J; Donner K J Exp Biol; 2012 Aug; 215(Pt 16):2760-73. PubMed ID: 22837448 [TBL] [Abstract][Full Text] [Related]
12. A comparative study on the visual adaptations of four species of moray eel. Wang FY; Tang MY; Yan HY Vision Res; 2011 May; 51(9):1099-108. PubMed ID: 21385593 [TBL] [Abstract][Full Text] [Related]
13. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Parry JW; Carleton KL; Spady T; Carboo A; Hunt DM; Bowmaker JK Curr Biol; 2005 Oct; 15(19):1734-9. PubMed ID: 16213819 [TBL] [Abstract][Full Text] [Related]
14. Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors. Flamarique IN; Cheng CL; Bergstrom C; Reimchen TE J Exp Biol; 2013 Feb; 216(Pt 4):656-67. PubMed ID: 23077162 [TBL] [Abstract][Full Text] [Related]
15. Limited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration. Coyle BJ; Hart NS; Carleton KL; Borgia G J Exp Biol; 2012 Apr; 215(Pt 7):1090-105. PubMed ID: 22399654 [TBL] [Abstract][Full Text] [Related]
16. The photoactivation energy of the visual pigment in two spectrally different populations of Mysis relicta (Crustacea, Mysida). Pahlberg J; Lindström M; Ala-Laurila P; Fyhrquist-Vanni N; Koskelainen A; Donner K J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Sep; 191(9):837-44. PubMed ID: 16010556 [TBL] [Abstract][Full Text] [Related]
17. The molecular genetics and evolution of colour and polarization vision in stomatopod crustaceans. Cronin TW; Porter ML; Bok MJ; Wolf JB; Robinson PR Ophthalmic Physiol Opt; 2010 Sep; 30(5):460-9. PubMed ID: 20883329 [TBL] [Abstract][Full Text] [Related]
18. Contrasting modes of evolution of the visual pigments in Heliconius butterflies. Yuan F; Bernard GD; Le J; Briscoe AD Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921 [TBL] [Abstract][Full Text] [Related]
19. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Chang BS; Crandall KA; Carulli JP; Hartl DL Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634 [TBL] [Abstract][Full Text] [Related]
20. Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey. Davies WL; Cowing JA; Carvalho LS; Potter IC; Trezise AE; Hunt DM; Collin SP FASEB J; 2007 Sep; 21(11):2713-24. PubMed ID: 17463225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]