These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22429301)
1. Phosphorus and DOC availability influence the partitioning between bacterioplankton production and respiration in tidal marsh ecosystems. del Giorgio PA; Newell RE Environ Microbiol; 2012 May; 14(5):1296-307. PubMed ID: 22429301 [TBL] [Abstract][Full Text] [Related]
2. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary. Apple JK; del Giorgio PA ISME J; 2007 Dec; 1(8):729-42. PubMed ID: 18059496 [TBL] [Abstract][Full Text] [Related]
3. Bacterioplankton Responses to Increased Organic Carbon and Nutrient Loading in a Boreal Estuary-Separate and Interactive Effects on Growth and Respiration. Soares ARA; Kritzberg ES; Custelcean I; Berggren M Microb Ecol; 2018 Jul; 76(1):144-155. PubMed ID: 29255936 [TBL] [Abstract][Full Text] [Related]
4. Bacterial growth efficiency in a tropical estuary: seasonal variability subsidized by allochthonous carbon. Pradeep Ram AS; Nair S; Chandramohan D Microb Ecol; 2007 May; 53(4):591-9. PubMed ID: 17356948 [TBL] [Abstract][Full Text] [Related]
5. Response of bacterial metabolic activity to riverine dissolved organic carbon and exogenous viruses in estuarine and coastal waters: implications for CO2 emission. Xu J; Sun M; Shi Z; Harrison PJ; Liu H PLoS One; 2014; 9(7):e102490. PubMed ID: 25036641 [TBL] [Abstract][Full Text] [Related]
6. Bacterioplankton growth and nutrient use efficiencies under variable organic carbon and inorganic phosphorus ratios. Jansson M; Bergström AK; Lymer D; Vrede K; Karlsson J Microb Ecol; 2006 Aug; 52(2):358-64. PubMed ID: 16691326 [TBL] [Abstract][Full Text] [Related]
7. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159 [TBL] [Abstract][Full Text] [Related]
8. Shifts of soil microbial community composition along a short-term invasion chronosequence of Spartina alterniflora in a Chinese estuary. Zhang G; Bai J; Jia J; Wang W; Wang X; Zhao Q; Lu Q Sci Total Environ; 2019 Mar; 657():222-233. PubMed ID: 30543970 [TBL] [Abstract][Full Text] [Related]
9. The combination of different carbon sources enhances bacterial growth efficiency in aquatic ecosystems. Fonte ES; Amado AM; Meirelles-Pereira F; Esteves FA; Rosado AS; Farjalla VF Microb Ecol; 2013 Nov; 66(4):871-8. PubMed ID: 23963223 [TBL] [Abstract][Full Text] [Related]
10. Functional and compositional succession of bacterioplankton in response to a gradient in bioavailable dissolved organic carbon. Dinasquet J; Kragh T; Schrøter ML; Søndergaard M; Riemann L Environ Microbiol; 2013 Sep; 15(9):2616-28. PubMed ID: 23827019 [TBL] [Abstract][Full Text] [Related]
11. How does exotic Spartina alterniflora affect the contribution of iron-bound organic carbon to soil organic carbon in salt marshes? Chen W; Zhang W; Qiu Y; Shu Z; Liu JE; Zhang X; Waqas K; Song G Sci Total Environ; 2024 May; 926():171605. PubMed ID: 38461991 [TBL] [Abstract][Full Text] [Related]
12. Bacterial growth and DOC consumption in a tropical coastal lagoon. Farjalla VF; Enrich-Prast A; Esteves FA; Cimbleris AC Braz J Biol; 2006 May; 66(2A):383-92. PubMed ID: 16862291 [TBL] [Abstract][Full Text] [Related]
13. Disturbance legacies increase and synchronize nutrient concentrations and bacterial productivity in coastal ecosystems. Kominoski JS; Gaiser EE; Castañeda-Moya E; Davis SE; Dessu SB; Julian P; Lee DY; Marazzi L; Rivera-Monroy VH; Sola A; Stingl U; Stumpf S; Surratt D; Travieso R; Troxler TG Ecology; 2020 May; 101(5):e02988. PubMed ID: 31958144 [TBL] [Abstract][Full Text] [Related]
14. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes. Wang F; Eagle M; Kroeger KD; Spivak AC; Tang J Sci Total Environ; 2021 Jan; 750():141566. PubMed ID: 32882493 [TBL] [Abstract][Full Text] [Related]
15. Bacterial growth efficiency in the tropical estuarine and coastal waters of Goa, southwest coast of India. Ram AS; Nair S; Chandramohan D Microb Ecol; 2003 Jan; 45(1):88-96. PubMed ID: 12469247 [TBL] [Abstract][Full Text] [Related]
16. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Tong C; Zhang L; Wang W; Gauci V; Marrs R; Liu B; Jia R; Zeng C Environ Res; 2011 Oct; 111(7):909-16. PubMed ID: 21704985 [TBL] [Abstract][Full Text] [Related]
17. Synergy of fresh and accumulated organic matter to bacterial growth. Farjalla VF; Marinho CC; Faria BM; Amado AM; Esteves Fde A; Bozelli RL; Giroldo D Microb Ecol; 2009 May; 57(4):657-66. PubMed ID: 18985269 [TBL] [Abstract][Full Text] [Related]
18. Soil microbial community development across a 32-year coastal wetland restoration time series and the relative importance of environmental factors. Abbott KM; Quirk T; Fultz LM Sci Total Environ; 2022 May; 821():153359. PubMed ID: 35081409 [TBL] [Abstract][Full Text] [Related]
19. Influence of salt marsh on bacterial activity in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary). Santos L; Cunha A; Silva H; Caçador I; Dias JM; Almeida A FEMS Microbiol Ecol; 2007 Jun; 60(3):429-41. PubMed ID: 17374125 [TBL] [Abstract][Full Text] [Related]
20. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit. Davis JL; Currin CA; O'Brien C; Raffenburg C; Davis A PLoS One; 2015; 10(11):e0142595. PubMed ID: 26569503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]