These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22429718)

  • 1. A common, non-optimal phenotypic endpoint in experimental adaptations of bacteriophage lysis time.
    Chantranupong L; Heineman RH
    BMC Evol Biol; 2012 Mar; 12():37. PubMed ID: 22429718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing optimality with experimental evolution: lysis time in a bacteriophage.
    Heineman RH; Bull JJ
    Evolution; 2007 Jul; 61(7):1695-709. PubMed ID: 17598749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimality models of phage life history and parallels in disease evolution.
    Bull JJ
    J Theor Biol; 2006 Aug; 241(4):928-38. PubMed ID: 16616205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Optimal Lysis Time Maximizes Bacteriophage Fitness in Quasi-Continuous Culture.
    Kannoly S; Singh A; Dennehy JJ
    mBio; 2022 Jun; 13(3):e0359321. PubMed ID: 35467417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary robustness of an optimal phenotype: re-evolution of lysis in a bacteriophage deleted for its lysin gene.
    Heineman RH; Molineux IJ; Bull JJ
    J Mol Evol; 2005 Aug; 61(2):181-91. PubMed ID: 16096681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary dominance of holin lysis systems derives from superior genetic malleability.
    Zheng Y; Struck DK; Dankenbring CA; Young R
    Microbiology (Reading); 2008 Jun; 154(Pt 6):1710-1718. PubMed ID: 18524925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriophage adsorption rate and optimal lysis time.
    Shao Y; Wang IN
    Genetics; 2008 Sep; 180(1):471-82. PubMed ID: 18757924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Within-host competition determines reproductive success of temperate bacteriophages.
    Refardt D
    ISME J; 2011 Sep; 5(9):1451-60. PubMed ID: 21412345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal foraging predicts the ecology but not the evolution of host specialization in bacteriophages.
    Guyader S; Burch CL
    PLoS One; 2008 Apr; 3(4):e1946. PubMed ID: 18414655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome properties and the limits of adaptation in bacteriophages.
    Bull JJ; Badgett MR; Springman R; Molineux IJ
    Evolution; 2004 Apr; 58(4):692-701. PubMed ID: 15154545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysis of Escherichia coli after infection with phiX174 depends on the regulation of the cellular autolytic system.
    Lubitz W; Halfmann G; Plapp R
    J Gen Microbiol; 1984 May; 130(5):1079-87. PubMed ID: 6236279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteriophage latent-period evolution as a response to resource availability.
    Abedon ST; Herschler TD; Stopar D
    Appl Environ Microbiol; 2001 Sep; 67(9):4233-41. PubMed ID: 11526028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual bacteria in structured environments rely on phenotypic resistance to phage.
    Attrill EL; Claydon R; Łapińska U; Recker M; Meaden S; Brown AT; Westra ER; Harding SV; Pagliara S
    PLoS Biol; 2021 Oct; 19(10):e3001406. PubMed ID: 34637438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetically Determined Variation in Lysis Time Variance in the Bacteriophage φX174.
    Baker CW; Miller CR; Thaweethai T; Yuan J; Baker MH; Joyce P; Weinreich DM
    G3 (Bethesda); 2016 Apr; 6(4):939-55. PubMed ID: 26921293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive regulatory substitutions affect multiple stages in the life cycle of the bacteriophage φX174.
    Brown CJ; Stancik AD; Roychoudhury P; Krone SM
    BMC Evol Biol; 2013 Mar; 13():66. PubMed ID: 23506096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane insertion mechanism and molecular assembly of the bacteriophage lysis toxin ΦX174-E.
    Mezhyrova J; Martin J; Peetz O; Dötsch V; Morgner N; Ma Y; Bernhard F
    FEBS J; 2021 May; 288(10):3300-3316. PubMed ID: 33244868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominant
    Hays SG; Seed KD
    Elife; 2020 Apr; 9():. PubMed ID: 32329714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The costs of evolving resistance in heterogeneous parasite environments.
    Koskella B; Lin DM; Buckling A; Thompson JN
    Proc Biol Sci; 2012 May; 279(1735):1896-903. PubMed ID: 22171085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary Stabilization of Cooperative Toxin Production through a Bacterium-Plasmid-Phage Interplay.
    Spriewald S; Stadler E; Hense BA; Münch PC; McHardy AC; Weiss AS; Obeng N; Müller J; Stecher B
    mBio; 2020 Jul; 11(4):. PubMed ID: 32694140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysis timing and bacteriophage fitness.
    Wang IN
    Genetics; 2006 Jan; 172(1):17-26. PubMed ID: 16219778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.