BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 22429869)

  • 21. Cartilaginous constructs using primary chondrocytes from continuous expansion culture seeded in dense collagen gels.
    Rosenzweig DH; Chicatun F; Nazhat SN; Quinn TM
    Acta Biomater; 2013 Dec; 9(12):9360-9. PubMed ID: 23896567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    J Orthop Res; 2003 Jul; 21(4):590-6. PubMed ID: 12798056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation.
    De Croos JN; Dhaliwal SS; Grynpas MD; Pilliar RM; Kandel RA
    Matrix Biol; 2006 Aug; 25(6):323-31. PubMed ID: 16697175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Culture duration modulates collagen hydrolysate-induced tissue remodeling in chondrocyte-seeded agarose hydrogels.
    Ng KW; Saliman JD; Lin EY; Statman LY; Kugler LE; Lo SB; Ateshian GA; Hung CT
    Ann Biomed Eng; 2007 Nov; 35(11):1914-23. PubMed ID: 17721729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage.
    Sawatjui N; Limpaiboon T; Schrobback K; Klein T
    J Tissue Eng Regen Med; 2018 May; 12(5):1220-1229. PubMed ID: 29489056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels.
    Nicodemus GD; Bryant SJ
    Osteoarthritis Cartilage; 2010 Jan; 18(1):126-37. PubMed ID: 19748607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Varying regional topology within knee articular chondrocytes under simulated in vivo conditions.
    Salzmann GM; Buchberger MS; Stoddart MJ; Grad S; Milz S; Niemyer P; Sudkamp NP; Imhoff AB; Alini M
    Tissue Eng Part A; 2011 Feb; 17(3-4):451-61. PubMed ID: 20807006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of pericellular matrix in development of a mechanically functional neocartilage.
    Graff RD; Kelley SS; Lee GM
    Biotechnol Bioeng; 2003 May; 82(4):457-64. PubMed ID: 12632402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermoreversible hydrogel scaffolds for articular cartilage engineering.
    Fisher JP; Jo S; Mikos AG; Reddi AH
    J Biomed Mater Res A; 2004 Nov; 71(2):268-74. PubMed ID: 15368220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy.
    Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH
    Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RGD-dependent integrins are mechanotransducers in dynamically compressed tissue-engineered cartilage constructs.
    Kock LM; Schulz RM; van Donkelaar CC; Thümmler CB; Bader A; Ito K
    J Biomech; 2009 Sep; 42(13):2177-82. PubMed ID: 19656515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.
    Preiss-Bloom O; Mizrahi J; Elisseeff J; Seliktar D
    Artif Organs; 2009 Apr; 33(4):318-27. PubMed ID: 19335408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis.
    Tang S; Spector M
    Biomed Mater; 2007 Sep; 2(3):S135-41. PubMed ID: 18458458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanostimulation changes the catabolic phenotype of human dedifferentiated osteoarthritic chondrocytes.
    Halbwirth F; Niculescu-Morzsa E; Zwickl H; Bauer C; Nehrer S
    Knee Surg Sports Traumatol Arthrosc; 2015 Jan; 23(1):104-11. PubMed ID: 25377190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges.
    Francioli SE; Candrian C; Martin K; Heberer M; Martin I; Barbero A
    J Biomed Mater Res A; 2010 Dec; 95(3):924-31. PubMed ID: 20845491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Composition-function relations of cartilaginous tissues engineered from chondrocytes and mesenchymal stem cells isolated from bone marrow and infrapatellar fat pad.
    Vinardell T; Buckley CT; Thorpe SD; Kelly DJ
    J Tissue Eng Regen Med; 2011 Oct; 5(9):673-83. PubMed ID: 21953865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Short-term human chondrocyte culturing on oriented collagen coated gelatine scaffolds for cartilage replacement.
    Zehbe R; Libera J; Gross U; Schubert H
    Biomed Mater Eng; 2005; 15(6):445-54. PubMed ID: 16308460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preliminary study of mesenchymal stem cells-seeded type I collagen-glycosaminoglycan matrices for cartilage repair.
    Xiang Z; Hu W; Kong Q; Zhou H; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Feb; 20(2):148-54. PubMed ID: 16529325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels.
    Nöth U; Rackwitz L; Heymer A; Weber M; Baumann B; Steinert A; Schütze N; Jakob F; Eulert J
    J Biomed Mater Res A; 2007 Dec; 83(3):626-35. PubMed ID: 17503531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.