These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22429930)

  • 21. Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences.
    Carranza S; Baguñà J; Riutort M
    Mol Biol Evol; 1997 May; 14(5):485-97. PubMed ID: 9159926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenetic relationships of platyhelminthes based on 18S ribosomal gene sequences.
    Campos A; Cummings MP; Reyes JL; Laclette JP
    Mol Phylogenet Evol; 1998 Aug; 10(1):1-10. PubMed ID: 9751913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing recalcitrant problems in polyclad evolution and systematics with novel mitochondrial genome resources.
    Kenny NJ; Noreña C; Damborenea C; Grande C
    Genomics; 2019 May; 111(3):343-355. PubMed ID: 29486209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The urbilaterian brain revisited: novel insights into old questions from new flatworm clades.
    Bailly X; Reichert H; Hartenstein V
    Dev Genes Evol; 2013 May; 223(3):149-57. PubMed ID: 23143292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians.
    Boyer BC; Henry JJ; Martindale MQ
    Dev Biol; 1998 Dec; 204(1):111-23. PubMed ID: 9851846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary analysis of mitogenomes from parasitic and free-living flatworms.
    Solà E; Álvarez-Presas M; Frías-López C; Littlewood DT; Rozas J; Riutort M
    PLoS One; 2015; 10(3):e0120081. PubMed ID: 25793530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hox genes and the parasitic flatworms: new opportunities, challenges and lessons from the free-living.
    Olson PD
    Parasitol Int; 2008 Mar; 57(1):8-17. PubMed ID: 17977060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Updated inventory and distribution of free-living flatworms from Tunisian waters.
    Gammoudi M; Garbouj M; Egger B; Tekaya S
    Zootaxa; 2017 May; 4263(1):120-138. PubMed ID: 28609883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The first multi-gene phylogeny of the Macrostomorpha sheds light on the evolution of sexual and asexual reproduction in basal Platyhelminthes.
    Janssen T; Vizoso DB; Schulte G; Littlewood DT; Waeschenbach A; Schärer L
    Mol Phylogenet Evol; 2015 Nov; 92():82-107. PubMed ID: 26093054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The embryonic development of the polyclad flatworm Imogine mcgrathi.
    Younossi-Hartenstein A; Hartenstein V
    Dev Genes Evol; 2000 Sep; 210(8-9):383-98. PubMed ID: 11180845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Do Not Lose Your Head Over the Unequal Regeneration Capacity in Prolecithophoran Flatworms.
    Grosbusch AL; Bertemes P; Kauffmann B; Gotsis C; Egger B
    Biology (Basel); 2022 Oct; 11(11):. PubMed ID: 36358289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular dynamics during regeneration of the flatworm Monocelis sp. (Proseriata, Platyhelminthes).
    Girstmair J; Schnegg R; Telford MJ; Egger B
    Evodevo; 2014; 5():37. PubMed ID: 25908954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Embryonic muscle development in direct and indirect developing marine flatworms (Platyhelminthes, Polycladida).
    Bolaños DM; Litvaitis MK
    Evol Dev; 2009; 11(3):290-301. PubMed ID: 19469856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conservation and diversification of small RNA pathways within flatworms.
    Fontenla S; Rinaldi G; Smircich P; Tort JF
    BMC Evol Biol; 2017 Sep; 17(1):215. PubMed ID: 28893179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes.
    Sempere LF; Martinez P; Cole C; Baguñà J; Peterson KJ
    Evol Dev; 2007; 9(5):409-15. PubMed ID: 17845513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substantial loss of conserved and gain of novel MicroRNA families in flatworms.
    Fromm B; Worren MM; Hahn C; Hovig E; Bachmann L
    Mol Biol Evol; 2013 Dec; 30(12):2619-28. PubMed ID: 24025793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A common origin of complex life cycles in parasitic flatworms: evidence from the complete mitochondrial genome of Microcotyle sebastis (Monogenea: Platyhelminthes).
    Park JK; Kim KH; Kang S; Kim W; Eom KS; Littlewood DT
    BMC Evol Biol; 2007 Feb; 7():11. PubMed ID: 17270057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Taxonomic Distribution of Tetrodotoxin in Acotylean Flatworms (Polycladida: Platyhelminthes).
    Kashitani M; Okabe T; Oyama H; Noguchi K; Yamazaki H; Suo R; Mori T; Sugita H; Itoi S
    Mar Biotechnol (NY); 2020 Dec; 22(6):805-811. PubMed ID: 32415408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclear genomic signals of the 'microturbellarian' roots of platyhelminth evolutionary innovation.
    Laumer CE; Hejnol A; Giribet G
    Elife; 2015 Mar; 4():. PubMed ID: 25764302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of Wnt expression identifies a highly conserved developmental transition in flatworms.
    Koziol U; Jarero F; Olson PD; Brehm K
    BMC Biol; 2016 Mar; 14():10. PubMed ID: 26941070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.