These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 22430022)
1. Functional roles for redox genes in ethanol sensitivity in Drosophila. Awofala AA; Davies JA; Jones S Funct Integr Genomics; 2012 Jun; 12(2):305-15. PubMed ID: 22430022 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis of chloride intracellular channel knockdown in Drosophila identifies oxidation-reduction function as possible mechanism of altered sensitivity to ethanol sedation. Weston RM; Schmitt RE; Grotewiel M; Miles MF PLoS One; 2021; 16(7):e0246224. PubMed ID: 34228751 [TBL] [Abstract][Full Text] [Related]
3. Alcohol sensitivity in Drosophila: translational potential of systems genetics. Morozova TV; Ayroles JF; Jordan KW; Duncan LH; Carbone MA; Lyman RF; Stone EA; Govindaraju DR; Ellison RC; Mackay TF; Anholt RR Genetics; 2009 Oct; 183(2):733-45, 1SI-12SI. PubMed ID: 19652175 [TBL] [Abstract][Full Text] [Related]
4. RiboTag translatomic profiling of Drosophila oenocytes under aging and induced oxidative stress. Huang K; Chen W; Zhu F; Li PW; Kapahi P; Bai H BMC Genomics; 2019 Jan; 20(1):50. PubMed ID: 30651069 [TBL] [Abstract][Full Text] [Related]
5. Dynamic changes in gene expression and alternative splicing mediate the response to acute alcohol exposure in Drosophila melanogaster. Signor S; Nuzhdin S Heredity (Edinb); 2018 Oct; 121(4):342-360. PubMed ID: 30143789 [TBL] [Abstract][Full Text] [Related]
6. Ethanol-regulated genes that contribute to ethanol sensitivity and rapid tolerance in Drosophila. Kong EC; Allouche L; Chapot PA; Vranizan K; Moore MS; Heberlein U; Wolf FW Alcohol Clin Exp Res; 2010 Feb; 34(2):302-16. PubMed ID: 19951294 [TBL] [Abstract][Full Text] [Related]
9. The genetic relationships between ethanol preference, acute ethanol sensitivity, and ethanol tolerance in Drosophila melanogaster. Devineni AV; McClure KD; Guarnieri DJ; Corl AB; Wolf FW; Eddison M; Heberlein U Fly (Austin); 2011; 5(3):191-9. PubMed ID: 21750412 [TBL] [Abstract][Full Text] [Related]
10. Differential RNAi screening provides insights into the rewiring of signalling networks during oxidative stress. Garcia MA; Alvarez MS; Sailem H; Bousgouni V; Sero J; Bakal C Mol Biosyst; 2012 Oct; 8(10):2605-13. PubMed ID: 22790786 [TBL] [Abstract][Full Text] [Related]
11. Loss of p24 function in Drosophila melanogaster causes a stress response and increased levels of NF-kappaB-regulated gene products. Boltz KA; Carney GE BMC Genomics; 2008 May; 9():212. PubMed ID: 18466616 [TBL] [Abstract][Full Text] [Related]
12. Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population. Ng'oma E; Williams-Simon PA; Rahman A; King EG BMC Genomics; 2020 Jan; 21(1):84. PubMed ID: 31992183 [TBL] [Abstract][Full Text] [Related]
13. Full genome gene expression analysis of the heat stress response in Drosophila melanogaster. Sørensen JG; Nielsen MM; Kruhøffer M; Justesen J; Loeschcke V Cell Stress Chaperones; 2005; 10(4):312-28. PubMed ID: 16333985 [TBL] [Abstract][Full Text] [Related]
14. Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster. Morozova TV; Anholt RR; Mackay TF Genome Biol; 2007; 8(10):R231. PubMed ID: 17973985 [TBL] [Abstract][Full Text] [Related]
15. Modulation of the Drosophila transcriptome by developmental exposure to alcohol. Morozova TV; Shankar V; MacPherson RA; Mackay TFC; Anholt RRH BMC Genomics; 2022 May; 23(1):347. PubMed ID: 35524193 [TBL] [Abstract][Full Text] [Related]