These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 22430147)

  • 21. Effects of High-Intensity Interval Exercise Training on Skeletal Myopathy of Chronic Heart Failure.
    Tzanis G; Philippou A; Karatzanos E; Dimopoulos S; Kaldara E; Nana E; Pitsolis T; Rontogianni D; Koutsilieris M; Nanas S
    J Card Fail; 2017 Jan; 23(1):36-46. PubMed ID: 27327970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsic skeletal muscle alterations in chronic heart failure patients: a disease-specific myopathy or a result of deconditioning?
    Rehn TA; Munkvik M; Lunde PK; Sjaastad I; Sejersted OM
    Heart Fail Rev; 2012 May; 17(3):421-36. PubMed ID: 21996779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Respiratory muscle dysfunction and training in chronic heart failure.
    Wong E; Selig S; Hare DL
    Heart Lung Circ; 2011 May; 20(5):289-94. PubMed ID: 21435947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease.
    Kim HC; Mofarrahi M; Hussain SN
    Int J Chron Obstruct Pulmon Dis; 2008; 3(4):637-58. PubMed ID: 19281080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Objective assessment of subjective symptom in chronic heart failure].
    Matsui S; Tamura N
    Rinsho Byori; 1998 Jan; 46(1):33-42. PubMed ID: 9492536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Making the case for skeletal myopathy as the major limitation of exercise capacity in heart failure.
    Middlekauff HR
    Circ Heart Fail; 2010 Jul; 3(4):537-46. PubMed ID: 20647489
    [No Abstract]   [Full Text] [Related]  

  • 27. Contributions of skeletal muscle myopathy to heart failure: novel mechanisms and therapies. Introduction.
    Chapleau MW
    Exp Physiol; 2014 Apr; 99(4):607-8. PubMed ID: 24692590
    [No Abstract]   [Full Text] [Related]  

  • 28. Origin of heart failure: cardiac or generalized myopathy?
    Ferrari R
    Eur Heart J; 1999 Nov; 20(22):1613-4. PubMed ID: 10543921
    [No Abstract]   [Full Text] [Related]  

  • 29. Skeletal muscle abnormalities in chronic heart failure patients: relation to exercise capacity and therapeutic implications.
    Nicoletti I; Cicoira M; Zanolla L; Franceschini L; Brighetti G; Pilati M; Zardini P
    Congest Heart Fail; 2003; 9(3):148-54. PubMed ID: 12826773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skeletal muscle abnormalities and evidence for their role in symptom generation in chronic heart failure.
    Harrington D; Coats AJ
    Eur Heart J; 1997 Dec; 18(12):1865-72. PubMed ID: 9447313
    [No Abstract]   [Full Text] [Related]  

  • 31. Physiological and functional failure in chronic obstructive pulmonary disease, congestive heart failure and cancer: a debilitating intersection of sarcopenia, cachexia and breathlessness.
    Dudgeon D; Baracos VE
    Curr Opin Support Palliat Care; 2016 Sep; 10(3):236-41. PubMed ID: 27380222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles.
    Hambrecht R; Niebauer J; Fiehn E; Kälberer B; Offner B; Hauer K; Riede U; Schlierf G; Kübler W; Schuler G
    J Am Coll Cardiol; 1995 May; 25(6):1239-49. PubMed ID: 7722116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deconditioning fails to explain peripheral skeletal muscle alterations in men with chronic heart failure.
    Duscha BD; Annex BH; Green HJ; Pippen AM; Kraus WE
    J Am Coll Cardiol; 2002 Apr; 39(7):1170-4. PubMed ID: 11923042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The physiological basis of rehabilitation in chronic heart and lung disease.
    Vogiatzis I; Zakynthinos S
    J Appl Physiol (1985); 2013 Jul; 115(1):16-21. PubMed ID: 23620491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathophysiology of peripheral muscle wasting in cardiac cachexia.
    Filippatos GS; Anker SD; Kremastinos DT
    Curr Opin Clin Nutr Metab Care; 2005 May; 8(3):249-54. PubMed ID: 15809526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sarcopenia, cachexia and congestive heart failure in the elderly.
    Zamboni M; Rossi AP; Corzato F; Bambace C; Mazzali G; Fantin F
    Endocr Metab Immune Disord Drug Targets; 2013 Mar; 13(1):58-67. PubMed ID: 23369138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aerobic exercise training as therapy for cardiac and cancer cachexia.
    Alves CR; da Cunha TF; da Paixão NA; Brum PC
    Life Sci; 2015 Mar; 125():9-14. PubMed ID: 25500304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and exercise capacity.
    Larsen AI; Lindal S; Aukrust P; Toft I; Aarsland T; Dickstein K
    Int J Cardiol; 2002 Apr; 83(1):25-32. PubMed ID: 11959380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuromuscular electrical stimulation improves GLUT-4 and morphological characteristics of skeletal muscle in rats with heart failure.
    de Leon EB; Bortoluzzi A; Rucatti A; Nunes RB; Saur L; Rodrigues M; Oliveira U; Alves-Wagner AB; Xavier LL; Machado UF; Schaan BD; Dall'Ago P
    Acta Physiol (Oxf); 2011 Feb; 201(2):265-73. PubMed ID: 20698833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced knee extensor function in heart failure is not explained by inactivity.
    Toth MJ; Shaw AO; Miller MS; VanBuren P; LeWinter MM; Maughan DW; Ades PA
    Int J Cardiol; 2010 Sep; 143(3):276-82. PubMed ID: 19327849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.