These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 22430223)
1. Role of mRNA gestation and senescence in noise reduction during the cell cycle. Csikász-Nagy A; Mura I In Silico Biol; 2010; 10(1):81-8. PubMed ID: 22430223 [TBL] [Abstract][Full Text] [Related]
2. Role of mRNA Gestation and Senescence in Noise Reduction during the Cell Cycle. Csikász-Nagy A; Mura I Stud Health Technol Inform; 2011; 162():236-43. PubMed ID: 21685575 [TBL] [Abstract][Full Text] [Related]
3. A low number of SIC1 mRNA molecules ensures a low noise level in cell cycle progression of budding yeast. Barberis M; Beck C; Amoussouvi A; Schreiber G; Diener C; Herrmann A; Klipp E Mol Biosyst; 2011 Oct; 7(10):2804-12. PubMed ID: 21717009 [TBL] [Abstract][Full Text] [Related]
4. Post-transcriptional regulation of noise in protein distributions during gene expression. Jia T; Kulkarni RV Phys Rev Lett; 2010 Jul; 105(1):018101. PubMed ID: 20867481 [TBL] [Abstract][Full Text] [Related]
5. How noise statistics impact models of enzyme cycles. Warmflash A; Adamson DN; Dinner AR J Chem Phys; 2008 Jun; 128(22):225101. PubMed ID: 18554058 [TBL] [Abstract][Full Text] [Related]
6. Exploring the roles of noise in the eukaryotic cell cycle. Kar S; Baumann WT; Paul MR; Tyson JJ Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6471-6. PubMed ID: 19246388 [TBL] [Abstract][Full Text] [Related]
7. Post-transcriptional regulation tends to attenuate the mRNA noise and to increase the mRNA gain. Shi C; Wang S; Zhou T; Jiang Y Phys Biol; 2015 Aug; 12(5):056002. PubMed ID: 26266661 [TBL] [Abstract][Full Text] [Related]
8. Stochastic Petri Net extension of a yeast cell cycle model. Mura I; Csikász-Nagy A J Theor Biol; 2008 Oct; 254(4):850-60. PubMed ID: 18703074 [TBL] [Abstract][Full Text] [Related]
9. Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity. Braunewell S; Bornholdt S J Theor Biol; 2007 Apr; 245(4):638-43. PubMed ID: 17204290 [TBL] [Abstract][Full Text] [Related]
10. A stochastic version of corticosteriod pharmacogenomic model. Qi X AAPS J; 2005 Jun; 7(1):E134-40. PubMed ID: 16146334 [TBL] [Abstract][Full Text] [Related]
11. Applications of Little's Law to stochastic models of gene expression. Elgart V; Jia T; Kulkarni RV Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021901. PubMed ID: 20866831 [TBL] [Abstract][Full Text] [Related]
12. The mean and noise of stochastic gene transcription with cell division. Wang Q; Huang L; Wen K; Yu J Math Biosci Eng; 2018 Oct; 15(5):1255-1270. PubMed ID: 30380310 [TBL] [Abstract][Full Text] [Related]
13. A versatile petri net based architecture for modeling and simulation of complex biological processes. Nagasaki M; Doi A; Matsuno H; Miyano S Genome Inform; 2004; 15(1):180-97. PubMed ID: 15712121 [TBL] [Abstract][Full Text] [Related]
14. Few crucial links assure checkpoint efficiency in the yeast cell-cycle network. Stoll G; Rougemont J; Naef F Bioinformatics; 2006 Oct; 22(20):2539-46. PubMed ID: 16895923 [TBL] [Abstract][Full Text] [Related]
15. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Di Talia S; Skotheim JM; Bean JM; Siggia ED; Cross FR Nature; 2007 Aug; 448(7156):947-51. PubMed ID: 17713537 [TBL] [Abstract][Full Text] [Related]
17. A stochastic model of size control in the budding yeast cell cycle. Ahmadian M; Tyson JJ; Cao Y BMC Bioinformatics; 2019 Jun; 20(Suppl 12):322. PubMed ID: 31216979 [TBL] [Abstract][Full Text] [Related]
18. Renewal-reward process formulation of motor protein dynamics. Krishnan A; Epureanu BI Bull Math Biol; 2011 Oct; 73(10):2452-82. PubMed ID: 21327881 [TBL] [Abstract][Full Text] [Related]
19. Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations. Steuer R J Theor Biol; 2004 Jun; 228(3):293-301. PubMed ID: 15135028 [TBL] [Abstract][Full Text] [Related]
20. A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA. Sozou PD; Kirkwood TB J Theor Biol; 2001 Dec; 213(4):573-86. PubMed ID: 11742526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]