BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22430225)

  • 21. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles.
    Espinosa-Soto C; Padilla-Longoria P; Alvarez-Buylla ER
    Plant Cell; 2004 Nov; 16(11):2923-39. PubMed ID: 15486106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity and acts through WUSCHEL to regulate floral meristem determinacy.
    Carles CC; Lertpiriyapong K; Reville K; Fletcher JC
    Genetics; 2004 Aug; 167(4):1893-903. PubMed ID: 15342527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis.
    Gregis V; Sessa A; Colombo L; Kater MM
    Plant J; 2008 Dec; 56(6):891-902. PubMed ID: 18694458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis).
    Tan FC; Swain SM
    Physiol Plant; 2007 Nov; 131(3):481-95. PubMed ID: 18251886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation.
    Ryan PT; Ó'Maoiléidigh DS; Drost HG; Kwaśniewska K; Gabel A; Grosse I; Graciet E; Quint M; Wellmer F
    BMC Genomics; 2015 Jul; 16(1):488. PubMed ID: 26126740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of floral patterning by flowering time genes.
    Liu C; Xi W; Shen L; Tan C; Yu H
    Dev Cell; 2009 May; 16(5):711-22. PubMed ID: 19460347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system.
    Battaglia R; Brambilla V; Colombo L; Stuitje AR; Kater MM
    Mech Dev; 2006 Apr; 123(4):267-76. PubMed ID: 16515858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.
    Castillejo C; Romera-Branchat M; Pelaz S
    Plant J; 2005 Aug; 43(4):586-96. PubMed ID: 16098111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers.
    Krizek BA; Lewis MW; Fletcher JC
    Plant J; 2006 Feb; 45(3):369-83. PubMed ID: 16412084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene regulatory network models for floral organ determination.
    Azpeitia E; Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER
    Methods Mol Biol; 2014; 1110():441-69. PubMed ID: 24395275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family.
    Krizek BA
    J Exp Bot; 2011 Jun; 62(10):3311-9. PubMed ID: 21511900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flower and fruit development in Arabidopsis thaliana.
    Robles P; Pelaz S
    Int J Dev Biol; 2005; 49(5-6):633-43. PubMed ID: 16096970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-ordination of Flower Development Through Epigenetic Regulation in Two Model Species: Rice and Arabidopsis.
    Guo S; Sun B; Looi LS; Xu Y; Gan ES; Huang J; Ito T
    Plant Cell Physiol; 2015 May; 56(5):830-42. PubMed ID: 25746984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis.
    Chen MK; Hsu WH; Lee PF; Thiruvengadam M; Chen HI; Yang CH
    Plant J; 2011 Oct; 68(1):168-85. PubMed ID: 21689171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Transcriptional network during flower development: from homeotic genes to genes controlling morphogenesis in Arabidopsis].
    Ito T
    Tanpakushitsu Kakusan Koso; 2005 Mar; 50(3):228-38. PubMed ID: 15773303
    [No Abstract]   [Full Text] [Related]  

  • 37. AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes.
    Nole-Wilson S; Krizek BA
    Plant Physiol; 2006 Jul; 141(3):977-87. PubMed ID: 16714408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MADS-box protein complexes control carpel and ovule development in Arabidopsis.
    Favaro R; Pinyopich A; Battaglia R; Kooiker M; Borghi L; Ditta G; Yanofsky MF; Kater MM; Colombo L
    Plant Cell; 2003 Nov; 15(11):2603-11. PubMed ID: 14555696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape.
    Alvarez-Buylla ER; Chaos A; Aldana M; Benítez M; Cortes-Poza Y; Espinosa-Soto C; Hartasánchez DA; Lotto RB; Malkin D; Escalera Santos GJ; Padilla-Longoria P
    PLoS One; 2008; 3(11):e3626. PubMed ID: 18978941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Determination of type and spatial pattern formation of flower organs: dynamic model of development].
    Skriabin KG; Alekseev DV; Ezhova TA; Kozlov VN; Kudriavtsev VB; Nosov MV; Penin AA; Chub VV; Shestakov SV; Shul'ga OA
    Izv Akad Nauk Ser Biol; 2006; (6):645-59. PubMed ID: 17168461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.