These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22430225)

  • 41. Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations.
    Ó'Maoiléidigh DS; Thomson B; Raganelli A; Wuest SE; Ryan PT; Kwaśniewska K; Carles CC; Graciet E; Wellmer F
    Plant J; 2015 Jul; 83(2):344-58. PubMed ID: 25990192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes.
    Davila-Velderrain J; Servin-Marquez A; Alvarez-Buylla ER
    Mol Biol Evol; 2014 Mar; 31(3):560-73. PubMed ID: 24273325
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deterministic and Stochastic Models of Arabidopsis thaliana Flowering.
    Haspolat E; Huard B; Angelova M
    Bull Math Biol; 2019 Jan; 81(1):277-311. PubMed ID: 30411251
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gene networks controlling Arabidopsis thaliana flower development.
    Ó'Maoiléidigh DS; Graciet E; Wellmer F
    New Phytol; 2014 Jan; 201(1):16-30. PubMed ID: 23952532
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial dynamics of floral organ formation.
    Cortes-Poza Y; Padilla-Longoria P; Alvarez-Buylla E
    J Theor Biol; 2018 Oct; 454():30-40. PubMed ID: 29857084
    [TBL] [Abstract][Full Text] [Related]  

  • 46.
    Shin K; Lee I; Kim E; Park SK; Soh MS; Lee S
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781591
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis.
    Zhang F; Liu X; Zhang A; Jiang Z; Chen L; Zhang X
    BMC Plant Biol; 2019 Jan; 19(1):11. PubMed ID: 30616516
    [TBL] [Abstract][Full Text] [Related]  

  • 48. From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches.
    Alvarez-Buylla ER; Azpeitia E; Barrio R; Benítez M; Padilla-Longoria P
    Semin Cell Dev Biol; 2010 Feb; 21(1):108-17. PubMed ID: 19922810
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Network function shapes network structure: the case of the Arabidopsis flower organ specification genetic network.
    Henry A; Monéger F; Samal A; Martin OC
    Mol Biosyst; 2013 Jul; 9(7):1726-35. PubMed ID: 23579205
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interactions between transcription factors and chromatin regulators in the control of flower development.
    Vachon G; Engelhorn J; Carles CC
    J Exp Bot; 2018 Apr; 69(10):2461-2471. PubMed ID: 29506187
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A data-driven integrative model of sepal primordium polarity in Arabidopsis.
    La Rota C; Chopard J; Das P; Paindavoine S; Rozier F; Farcot E; Godin C; Traas J; Monéger F
    Plant Cell; 2011 Dec; 23(12):4318-33. PubMed ID: 22198150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. General theory of genotype to phenotype mapping: derivation of epigenetic landscapes from N-node complex gene regulatory networks.
    Villarreal C; Padilla-Longoria P; Alvarez-Buylla ER
    Phys Rev Lett; 2012 Sep; 109(11):118102. PubMed ID: 23005679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis.
    Mendoza L; Thieffry D; Alvarez-Buylla ER
    Bioinformatics; 1999; 15(7-8):593-606. PubMed ID: 10487867
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control.
    Refahi Y; Zardilis A; Michelin G; Wightman R; Leggio B; Legrand J; Faure E; Vachez L; Armezzani A; Risson AE; Zhao F; Das P; Prunet N; Meyerowitz EM; Godin C; Malandain G; Jönsson H; Traas J
    Dev Cell; 2021 Feb; 56(4):540-556.e8. PubMed ID: 33621494
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simple network motifs can capture key characteristics of the floral transition in Arabidopsis.
    Pullen N; Jaeger KE; Wigge PA; Morris RJ
    Plant Signal Behav; 2013 Nov; 8(11):e26149. PubMed ID: 23989666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach.
    Xie W; Huang J; Liu Y; Rao J; Luo D; He M
    Front Plant Sci; 2015; 6():829. PubMed ID: 26528302
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A transcriptional complex of NGATHA and bHLH transcription factors directs stigma development in Arabidopsis.
    Ballester P; Martínez-Godoy MA; Ezquerro M; Navarrete-Gómez M; Trigueros M; Rodríguez-Concepción M; Ferrándiz C
    Plant Cell; 2021 Dec; 33(12):3645-3657. PubMed ID: 34586419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hormones and Flower Development in Arabidopsis.
    Zúñiga-Mayo VM; Durán-Medina Y; Marsch-Martínez N; de Folter S
    Methods Mol Biol; 2023; 2686():111-127. PubMed ID: 37540356
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history.
    Pajoro A; Biewers S; Dougali E; Leal Valentim F; Mendes MA; Porri A; Coupland G; Van de Peer Y; van Dijk AD; Colombo L; Davies B; Angenent GC
    J Exp Bot; 2014 Sep; 65(17):4731-45. PubMed ID: 24913630
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stabilizing gene regulatory networks through feedforward loops.
    Kadelka C; Murrugarra D; Laubenbacher R
    Chaos; 2013 Jun; 23(2):025107. PubMed ID: 23822505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.