These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 22430491)

  • 1. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition.
    Horiuchi D; Kusdra L; Huskey NE; Chandriani S; Lenburg ME; Gonzalez-Angulo AM; Creasman KJ; Bazarov AV; Smyth JW; Davis SE; Yaswen P; Mills GB; Esserman LJ; Goga A
    J Exp Med; 2012 Apr; 209(4):679-96. PubMed ID: 22430491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression.
    Horiuchi D; Camarda R; Zhou AY; Yau C; Momcilovic O; Balakrishnan S; Corella AN; Eyob H; Kessenbrock K; Lawson DA; Marsh LA; Anderton BN; Rohrberg J; Kunder R; Bazarov AV; Yaswen P; McManus MT; Rugo HS; Werb Z; Goga A
    Nat Med; 2016 Nov; 22(11):1321-1329. PubMed ID: 27775705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple negative breast cancer--current status and prospective targeted treatment based on HER1 (EGFR), TOP2A and C-MYC gene assessment.
    Bouchalova K; Cizkova M; Cwiertka K; Trojanec R; Hajduch M
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2009 Mar; 153(1):13-7. PubMed ID: 19365520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-Myc dependent expression of pro-apoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1.
    Campone M; Noël B; Couriaud C; Grau M; Guillemin Y; Gautier F; Gouraud W; Charbonnel C; Campion L; Jézéquel P; Braun F; Barré B; Coqueret O; Barillé-Nion S; Juin P
    Mol Cancer; 2011 Sep; 10():110. PubMed ID: 21899728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth factor receptor/steroid receptor cross talk in trastuzumab-treated breast cancer.
    Collins DC; Cocchiglia S; Tibbitts P; Solon G; Bane FT; McBryan J; Treumann A; Eustace A; Hennessy B; Hill AD; Young LS
    Oncogene; 2015 Jan; 34(4):525-30. PubMed ID: 24469058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia.
    Reynolds C; Roderick JE; LaBelle JL; Bird G; Mathieu R; Bodaar K; Colon D; Pyati U; Stevenson KE; Qi J; Harris M; Silverman LB; Sallan SE; Bradner JE; Neuberg DS; Look AT; Walensky LD; Kelliher MA; Gutierrez A
    Leukemia; 2014 Sep; 28(9):1819-27. PubMed ID: 24552990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDK inhibitors upregulate BH3-only proteins to sensitize human myeloma cells to BH3 mimetic therapies.
    Chen S; Dai Y; Pei XY; Myers J; Wang L; Kramer LB; Garnett M; Schwartz DM; Su F; Simmons GL; Richey JD; Larsen DG; Dent P; Orlowski RZ; Grant S
    Cancer Res; 2012 Aug; 72(16):4225-37. PubMed ID: 22693249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim.
    Park SH; Ito K; Olcott W; Katsyv I; Halstead-Nussloch G; Irie HY
    Breast Cancer Res; 2015 Jun; 17(1):86. PubMed ID: 26084280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating therapeutic effects of the c-Src inhibitor via oestrogen receptor and human epidermal growth factor receptor 2 in breast cancer cell lines.
    Fan P; McDaniel RE; Kim HR; Clagett D; Haddad B; Jordan VC
    Eur J Cancer; 2012 Dec; 48(18):3488-98. PubMed ID: 22658320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of CDK-mediated phosphorylation of Smad3 results in decreased oncogenesis in triple negative breast cancer cells.
    Tarasewicz E; Rivas L; Hamdan R; Dokic D; Parimi V; Bernabe BP; Thomas A; Shea LD; Jeruss JS
    Cell Cycle; 2014; 13(20):3191-201. PubMed ID: 25485498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential Combination Therapy of CDK Inhibition and Doxorubicin Is Synthetically Lethal in p53-Mutant Triple-Negative Breast Cancer.
    Jabbour-Leung NA; Chen X; Bui T; Jiang Y; Yang D; Vijayaraghavan S; McArthur MJ; Hunt KK; Keyomarsi K
    Mol Cancer Ther; 2016 Apr; 15(4):593-607. PubMed ID: 26826118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BCL-x(L) and BCL2 delay Myc-induced cell cycle entry through elevation of p27 and inhibition of G1 cyclin-dependent kinases.
    Greider C; Chattopadhyay A; Parkhurst C; Yang E
    Oncogene; 2002 Nov; 21(51):7765-75. PubMed ID: 12420213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic options for triple-negative breast cancers with defective homologous recombination.
    Jaspers JE; Rottenberg S; Jonkers J
    Biochim Biophys Acta; 2009 Dec; 1796(2):266-80. PubMed ID: 19616605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models.
    Ma CX; Cai S; Li S; Ryan CE; Guo Z; Schaiff WT; Lin L; Hoog J; Goiffon RJ; Prat A; Aft RL; Ellis MJ; Piwnica-Worms H
    J Clin Invest; 2012 Apr; 122(4):1541-52. PubMed ID: 22446188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways.
    Le XF; Pruefer F; Bast RC
    Cell Cycle; 2005 Jan; 4(1):87-95. PubMed ID: 15611642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decrease of c-erbB-2 and c-myc RNA levels in tamoxifen-treated breast cancer.
    Le Roy X; Escot C; Brouillet JP; Theillet C; Maudelonde T; Simony-Lafontaine J; Pujol H; Rochefort H
    Oncogene; 1991 Mar; 6(3):431-7. PubMed ID: 1707153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of growth arrest by c-myc antisense oligonucleotides in MCF-7 breast cancer cells: implications for the antiproliferative effects of antiestrogens.
    Carroll JS; Swarbrick A; Musgrove EA; Sutherland RL
    Cancer Res; 2002 Jun; 62(11):3126-31. PubMed ID: 12036924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells.
    Ferreira RB; Wang M; Law ME; Davis BJ; Bartley AN; Higgins PJ; Kilberg MS; Santostefano KE; Terada N; Heldermon CD; Castellano RK; Law BK
    Oncotarget; 2017 Apr; 8(17):28971-28989. PubMed ID: 28423644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gonadotropin-releasing hormone type II antagonist induces apoptosis in MCF-7 and triple-negative MDA-MB-231 human breast cancer cells in vitro and in vivo.
    Gründker C; Föst C; Fister S; Nolte N; Günthert AR; Emons G
    Breast Cancer Res; 2010; 12(4):R49. PubMed ID: 20630060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential therapeutic target for triple-negative breast cancer.
    Gilbert JA
    Lancet Oncol; 2012 Aug; 13(8):e330. PubMed ID: 23024992
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.