BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22430636)

  • 1. Increased CD200 expression in acute myeloid leukemia is linked with an increased frequency of FoxP3+ regulatory T cells.
    Coles SJ; Hills RK; Wang EC; Burnett AK; Man S; Darley RL; Tonks A
    Leukemia; 2012 Sep; 26(9):2146-8. PubMed ID: 22430636
    [No Abstract]   [Full Text] [Related]  

  • 2. Upregulation of CD200 is associated with Foxp3+ regulatory T cell expansion and disease progression in acute myeloid leukemia.
    Memarian A; Nourizadeh M; Masoumi F; Tabrizi M; Emami AH; Alimoghaddam K; Hadjati J; Mirahmadian M; Jeddi-Tehrani M
    Tumour Biol; 2013 Feb; 34(1):531-42. PubMed ID: 23179394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased CD200 expression in post-transplant lymphoproliferative disorders correlates with an increased frequency of FoxP3(+) regulatory T cells.
    Vaughan JW; Shi M; Horna P; Olteanu H
    Ann Diagn Pathol; 2020 Oct; 48():151585. PubMed ID: 32829067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Up-regulation of regulatory T cells, CD200 and TIM3 expression in cytogenetically normal acute myeloid leukemia.
    Zahran AM; Mohammed Saleh MF; Sayed MM; Rayan A; Ali AM; Hetta HF
    Cancer Biomark; 2018; 22(3):587-595. PubMed ID: 29843224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of CD200 on AML blasts directly suppresses memory T-cell function.
    Coles SJ; Hills RK; Wang EC; Burnett AK; Man S; Darley RL; Tonks A
    Leukemia; 2012 Sep; 26(9):2148-51. PubMed ID: 22430635
    [No Abstract]   [Full Text] [Related]  

  • 6. Beneficial role of increased FOXP3
    Menter T; Kuzmanic B; Bucher C; Medinger M; Halter J; Dirnhofer S; Tzankov A
    Br J Haematol; 2018 Aug; 182(4):581-583. PubMed ID: 28653378
    [No Abstract]   [Full Text] [Related]  

  • 7. In vivo-activated CD103+ Foxp3+ Tregs: of men and mice.
    Rötzschke O; Borsellino G; Battistini L; Falk K; Kleinewietfeld M
    Blood; 2009 Feb; 113(9):2119-20; author reply 2120. PubMed ID: 19246567
    [No Abstract]   [Full Text] [Related]  

  • 8. Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model.
    Wang R; Feng W; Wang H; Wang L; Yang X; Yang F; Zhang Y; Liu X; Zhang D; Ren Q; Feng X; Zheng G
    Cancer Lett; 2020 Jan; 469():151-161. PubMed ID: 31669202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells.
    Curti A; Pandolfi S; Valzasina B; Aluigi M; Isidori A; Ferri E; Salvestrini V; Bonanno G; Rutella S; Durelli I; Horenstein AL; Fiore F; Massaia M; Colombo MP; Baccarani M; Lemoli RM
    Blood; 2007 Apr; 109(7):2871-7. PubMed ID: 17164341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The immunosuppressive ligands PD-L1 and CD200 are linked in AML T-cell immunosuppression: identification of a new immunotherapeutic synapse.
    Coles SJ; Gilmour MN; Reid R; Knapper S; Burnett AK; Man S; Tonks A; Darley RL
    Leukemia; 2015 Sep; 29(9):1952-4. PubMed ID: 25748687
    [No Abstract]   [Full Text] [Related]  

  • 11. CCR4 dependent migration of Foxp3+ Treg cells to skin grafts and draining lymph nodes is implicated in enhanced graft survival in CD200tg recipients.
    Yu K; Chen Z; Khatri I; Gorczynski RM
    Immunol Lett; 2011 Dec; 141(1):116-22. PubMed ID: 21945175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular gastronomy: how to make the critical intestinal Foxp3+ Treg cell.
    Cong Y
    Gastroenterology; 2011 Nov; 141(5):1559-62. PubMed ID: 21945059
    [No Abstract]   [Full Text] [Related]  

  • 13. [Phenotypical and functional characteristic of FoxP3(+);CD39(+); regulatory T cells in humans].
    Huang HH; Wang SY; Wang HF; Fu JL; Han P; Wang FS
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2010 Jun; 26(6):536-8. PubMed ID: 20487644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Th17 and CD4
    Xiang M; Guo L; Ma Y; Li Y
    Pak J Pharm Sci; 2016 Nov; 29(6 Suppl):2405-2410. PubMed ID: 28167485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of Th17 and CD4+ CD25+ T regulatory cells in peripheral blood of acute leukemia patients and their prognostic significance.
    Xiang M; Guo L; Ma Y; Li Y
    Pak J Pharm Sci; 2017 Mar; 30(2(Suppl.)):619-624. PubMed ID: 28650331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T regulatory cells and autoimmune liver disease.
    Hirschfield GM; Heathcote J
    Liver Int; 2008 Feb; 28(2):155-7. PubMed ID: 18251975
    [No Abstract]   [Full Text] [Related]  

  • 17. Gfi1: a unique controller of T(reg) cells.
    Shi LZ; Chi H
    Cell Cycle; 2013 Dec; 12(23):3581-2. PubMed ID: 24131921
    [No Abstract]   [Full Text] [Related]  

  • 18. Overexpression of CD200 and CD123 is a major influential factor in the clinical course of pediatric acute myeloid leukemia.
    Kandeel EZ; Madney Y; Eldin DN; Shafik NF
    Exp Mol Pathol; 2021 Feb; 118():104597. PubMed ID: 33358743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FOXP3-positive regulatory T lymphocytes and epithelial FOXP3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast.
    Lal A; Chan L; Devries S; Chin K; Scott GK; Benz CC; Chen YY; Waldman FM; Hwang ES
    Breast Cancer Res Treat; 2013 Jun; 139(2):381-90. PubMed ID: 23712790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prevalence of FOXP3+ regulatory T-cells in peripheral blood of patients with NSCLC.
    Li L; Chao QG; Ping LZ; Xue C; Xia ZY; Qian D; Shi-ang H
    Cancer Biother Radiopharm; 2009 Jun; 24(3):357-67. PubMed ID: 19538059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.