BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22430922)

  • 1. Physicochemical performances of indomethacin in cholesteryl cetyl carbonate liquid crystal as a transdermal dosage.
    Aeinleng N; Songkro S; Noipha K; Srichana T
    AAPS PharmSciTech; 2012 Jun; 13(2):513-21. PubMed ID: 22430922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman and thermal analysis of indomethacin/PVP solid dispersion enteric microparticles.
    Fini A; Cavallari C; Ospitali F
    Eur J Pharm Biopharm; 2008 Sep; 70(1):409-20. PubMed ID: 18621516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tablet preformulations of indomethacin-loaded mesoporous silicon microparticles.
    Tahvanainen M; Rotko T; Mäkilä E; Santos HA; Neves D; Laaksonen T; Kallonen A; Hämäläinen K; Peura M; Serimaa R; Salonen J; Hirvonen J; Peltonen L
    Int J Pharm; 2012 Jan; 422(1-2):125-31. PubMed ID: 22063301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug delivery formulations of ordered and nonordered mesoporous silica: comparison of three drug loading methods.
    Limnell T; Santos HA; Mäkilä E; Heikkilä T; Salonen J; Murzin DY; Kumar N; Laaksonen T; Peltonen L; Hirvonen J
    J Pharm Sci; 2011 Aug; 100(8):3294-3306. PubMed ID: 21520084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.
    Estracanholli EA; Praça FS; Cintra AB; Pierre MB; Lara MG
    AAPS PharmSciTech; 2014 Dec; 15(6):1468-75. PubMed ID: 24980082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination with l-Menthol Enhances Transdermal Penetration of Indomethacin Solid Nanoparticles.
    Nagai N; Ogata F; Yamaguchi M; Fukuoka Y; Otake H; Nakazawa Y; Kawasaki N
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omega 3 fatty acid-enriched nanoemulsion of thiocolchicoside for transdermal delivery: formulation, characterization and absorption studies.
    Kumar D; Ali J; Baboota S
    Drug Deliv; 2016; 23(2):591-600. PubMed ID: 24892633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of indomethacin-saccharin (IMC-SAC) co-crystals prepared by an anti-solvent crystallization process.
    Chun NH; Wang IC; Lee MJ; Jung YT; Lee S; Kim WS; Choi GJ
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):854-61. PubMed ID: 23454054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam.
    Al-Mahallawi AM; Abdelbary AA; Aburahma MH
    Int J Pharm; 2015 May; 485(1-2):329-40. PubMed ID: 25796122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced release of indomethacin from Pvp/stearic acid microcapsules prepared coupling Co-freeze-drying and ultrasound assisted spray-congealing process.
    Cavallari C; Luppi B; Di Pietra AM; Rodriguez L; Fini A
    Pharm Res; 2007 Mar; 24(3):521-9. PubMed ID: 17252191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the physical stability of amorphous indomethacin by mixing it with octaacetylmaltose. inter and intra molecular studies.
    Kaminska E; Adrjanowicz K; Zakowiecki D; Milanowski B; Tarnacka M; Hawelek L; Dulski M; Pilch J; Smolka W; Kaczmarczyk-Sedlak I; Kaminski K
    Pharm Res; 2014 Oct; 31(10):2887-903. PubMed ID: 24831310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microemulsion: a novel transdermal delivery system to facilitate skin penetration of indomethacin.
    Chen L; Tan F; Wang J; Liu F
    Pharmazie; 2012 Apr; 67(4):319-23. PubMed ID: 22570938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation and characterizations of delayed release multi particulates system of indomethacin: optimization by response surface methodology.
    Nandy BC; Mazumder B
    Curr Drug Deliv; 2014; 11(1):72-86. PubMed ID: 24783236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase behavior of rifampicin in cholesterol-based liquid crystals and polyethylene glycol.
    Gangadhar KN; Changsan V; Buatong W; Srichana T
    Eur J Pharm Sci; 2012 Dec; 47(5):804-12. PubMed ID: 23026447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and evaluation of transdermal drug delivery system for curcumin as an anti-inflammatory drug.
    Patel NA; Patel NJ; Patel RP
    Drug Dev Ind Pharm; 2009 Feb; 35(2):234-42. PubMed ID: 18785045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cyclohexanone derivatives on in vitro percutaneous absorption of indomethacin.
    Danyi Q; Takayama K; Nagai T
    Drug Des Deliv; 1989 Jun; 4(4):323-30. PubMed ID: 2775452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a new nanovesicle formulation as transdermal carrier: formulation, physicochemical characterization, permeation studies and anti-inflammatory activity.
    Gaur PK; Mishra S; Purohit S; Kumar Y; Bhandari A
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):323-30. PubMed ID: 23944163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of low glass transition temperature indomethacin formulations: impact of polymer-type and its concentration.
    Chokshi RJ; Shah NH; Sandhu HK; Malick AW; Zia H
    J Pharm Sci; 2008 Jun; 97(6):2286-98. PubMed ID: 17879977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vitro and in vivo indomethacin release from self-setting bioactive glass bone cement.
    Otsuka M; Nakahigashi Y; Matsuda Y; Kokubo T; Yoshihara S; Fujita H; Nakamura T
    Biomed Mater Eng; 1997; 7(5):291-302. PubMed ID: 9457380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the physicochemical and biopharmaceutical properties of fluoro-indomethacin.
    Mori MM; Airaksinen AJ; Hirvonen JT; Santos HA; Caramella CM
    Curr Drug Metab; 2013 Jan; 14(1):80-9. PubMed ID: 22497567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.