These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 22430978)
1. Pegylation of antimicrobial peptides maintains the active peptide conformation, model membrane interactions, and antimicrobial activity while improving lung tissue biocompatibility following airway delivery. Morris CJ; Beck K; Fox MA; Ulaeto D; Clark GC; Gumbleton M Antimicrob Agents Chemother; 2012 Jun; 56(6):3298-308. PubMed ID: 22430978 [TBL] [Abstract][Full Text] [Related]
4. The Central Hinge Link Truncation of the Antimicrobial Peptide Fowlicidin-3 Enhances Its Cell Selectivity without Antibacterial Activity Loss. Qu P; Gao W; Chen H; Li D; Yang N; Zhu J; Feng X; Liu C; Li Z Antimicrob Agents Chemother; 2016 May; 60(5):2798-806. PubMed ID: 26902768 [TBL] [Abstract][Full Text] [Related]
5. Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity. Liu Y; Xia X; Xu L; Wang Y Biomaterials; 2013 Jan; 34(1):237-50. PubMed ID: 23046754 [TBL] [Abstract][Full Text] [Related]
6. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
7. Effects of PEGylation on membrane and lipopolysaccharide interactions of host defense peptides. Singh S; Papareddy P; Mörgelin M; Schmidtchen A; Malmsten M Biomacromolecules; 2014 Apr; 15(4):1337-45. PubMed ID: 24588750 [TBL] [Abstract][Full Text] [Related]
8. Action mechanism of tachyplesin I and effects of PEGylation. Imura Y; Nishida M; Ogawa Y; Takakura Y; Matsuzaki K Biochim Biophys Acta; 2007 May; 1768(5):1160-9. PubMed ID: 17320042 [TBL] [Abstract][Full Text] [Related]
9. Naphthalimide-Containing BP100 Leads to Higher Model Membranes Interactions and Antimicrobial Activity. Carretero GPB; Saraiva GKV; Rodrigues MA; Kiyota S; Bemquerer MP; Chaimovich H; Cuccovia IM Biomolecules; 2021 Apr; 11(4):. PubMed ID: 33917850 [TBL] [Abstract][Full Text] [Related]
10. Pegylated peptides. IV. Enhanced biological activity of site-directed pegylated GRF analogs. Felix AM; Lu YA; Campbell RM Int J Pept Protein Res; 1995; 46(3-4):253-64. PubMed ID: 8537179 [TBL] [Abstract][Full Text] [Related]
11. Effect of Linker Length on Cell Capture by Poly(ethylene glycol)-Immobilized Antimicrobial Peptides. Shriver-Lake LC; Anderson GP; Taitt CR Langmuir; 2017 Mar; 33(11):2878-2884. PubMed ID: 28253616 [TBL] [Abstract][Full Text] [Related]
12. PEGylation of the antimicrobial peptide nisin A: problems and perspectives. Guiotto A; Pozzobon M; Canevari M; Manganelli R; Scarin M; Veronese FM Farmaco; 2003 Jan; 58(1):45-50. PubMed ID: 12595036 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics. Garcia F; Villegas E; Espino-Solis GP; Rodriguez A; Paniagua-Solis JF; Sandoval-Lopez G; Possani LD; Corzo G J Antibiot (Tokyo); 2013 Jan; 66(1):3-10. PubMed ID: 23093034 [TBL] [Abstract][Full Text] [Related]
14. Modification of antimicrobial peptide with low molar mass poly(ethylene glycol). Zhang G; Han B; Lin X; Wu X; Yan H J Biochem; 2008 Dec; 144(6):781-8. PubMed ID: 18845567 [TBL] [Abstract][Full Text] [Related]
15. Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. Blondelle SE; Lohner K; Aguilar M Biochim Biophys Acta; 1999 Dec; 1462(1-2):89-108. PubMed ID: 10590304 [TBL] [Abstract][Full Text] [Related]
16. Designed low amphipathic peptides with alpha-helical propensity exhibiting antimicrobial activity via a lipid domain formation mechanism. Yamamoto N; Tamura A Peptides; 2010 May; 31(5):794-805. PubMed ID: 20109510 [TBL] [Abstract][Full Text] [Related]
17. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity. Zhu X; Zhang L; Wang J; Ma Z; Xu W; Li J; Shan A Acta Biomater; 2015 May; 18():155-67. PubMed ID: 25735802 [TBL] [Abstract][Full Text] [Related]
18. Pseudin-2: an antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog. Olson L; Soto AM; Knoop FC; Conlon JM Biochem Biophys Res Commun; 2001 Nov; 288(4):1001-5. PubMed ID: 11689009 [TBL] [Abstract][Full Text] [Related]
19. Pulmonary surfactant and drug delivery: Vehiculization of a tryptophan-tagged antimicrobial peptide over the air-liquid interfacial highway. García-Mouton C; Parra-Ortiz E; Malmsten M; Cruz A; Pérez-Gil J Eur J Pharm Biopharm; 2022 Nov; 180():33-47. PubMed ID: 36154903 [TBL] [Abstract][Full Text] [Related]
20. Improved intrapulmonary delivery of site-specific PEGylated salmon calcitonin: optimization by PEG size selection. Youn YS; Kwon MJ; Na DH; Chae SY; Lee S; Lee KC J Control Release; 2008 Jan; 125(1):68-75. PubMed ID: 18023905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]