These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22431212)

  • 1. Leg tissue mass composition affects tibial acceleration response following impact.
    Schinkel-Ivy A; Burkhart TA; Andrews DM
    J Appl Biomech; 2012 Feb; 28(1):29-40. PubMed ID: 22431212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of leg muscle activation state and localized muscle fatigue on tibial response during impact.
    Holmes AM; Andrews DM
    J Appl Biomech; 2006 Nov; 22(4):275-84. PubMed ID: 17293624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between body composition and impact-related parameters in male and female heel-toe runners.
    Giandolini M; Bartold S; Horvais N
    Gait Posture; 2019 May; 70():355-360. PubMed ID: 30952109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of localized leg muscle fatigue on tibial impact acceleration.
    Flynn JM; Holmes JD; Andrews DM
    Clin Biomech (Bristol, Avon); 2004 Aug; 19(7):726-32. PubMed ID: 15288459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tibialis anterior muscle fatigue leads to changes in tibial axial acceleration after impact when ankle dorsiflexion angles are visually controlled.
    Duquette AM; Andrews DM
    Hum Mov Sci; 2010 Aug; 29(4):567-77. PubMed ID: 20579757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age comparisons of bone density and geometry in men.
    Sherk VD; Karabulut M; Bemben MG; Bemben DA
    J Musculoskelet Neuronal Interact; 2009; 9(4):256-62. PubMed ID: 19949283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The location of the tibial accelerometer does influence impact acceleration parameters during running.
    Lucas-Cuevas AG; Encarnación-Martínez A; Camacho-García A; Llana-Belloch S; Pérez-Soriano P
    J Sports Sci; 2017 Sep; 35(17):1734-1738. PubMed ID: 27690754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in distal lower extremity tissue masses and mass ratios exist in athletes of sports involving repetitive impacts.
    Schinkel-Ivy A; Burkhart TA; Andrews DM
    J Sports Sci; 2014; 32(6):533-41. PubMed ID: 24050754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lean body mass and leg power best predict bone mineral density in adolescent girls.
    Witzke KA; Snow CM
    Med Sci Sports Exerc; 1999 Nov; 31(11):1558-63. PubMed ID: 10589857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the Fatigue Induced by a 110-km Ultramarathon on Tibial Impact Acceleration and Lower Leg Kinematics.
    Giandolini M; Gimenez P; Temesi J; Arnal PJ; Martin V; Rupp T; Morin JB; Samozino P; Millet GY
    PLoS One; 2016; 11(3):e0151687. PubMed ID: 27031830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strength training combined with plyometric jumps in adults: sex differences in fat-bone axis adaptations.
    Guadalupe-Grau A; Perez-Gomez J; Olmedillas H; Chavarren J; Dorado C; Santana A; Serrano-Sanchez JA; Calbet JA
    J Appl Physiol (1985); 2009 Apr; 106(4):1100-11. PubMed ID: 19196911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dominant role of interface over knee angle for cushioning impact loading and regulating initial leg stiffness.
    Lafortune MA; Hennig EM; Lake MJ
    J Biomech; 1996 Dec; 29(12):1523-9. PubMed ID: 8945650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing methods of quantifying tibial acceleration slope.
    Duquette AM; Andrews DM
    J Appl Biomech; 2010 May; 26(2):229-33. PubMed ID: 20498495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sex and age on bone mass, body composition and fuel metabolism in humans.
    Horber FF; Gruber B; Thomi F; Jensen EX; Jaeger P
    Nutrition; 1997 Jun; 13(6):524-34. PubMed ID: 9263233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue mass ratios and the reporting of distal lower extremity injuries in varsity athletes at a Canadian University.
    Burkhart TA; Schinkel-Ivy A; Andrews DM
    J Sports Sci; 2013; 31(6):684-7. PubMed ID: 23215824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influences of impact interface, muscle activity, and knee angle on impact forces and tibial and femoral accelerations occurring after external impacts.
    Potthast W; Brüggemann GP; Lundberg A; Arndt A
    J Appl Biomech; 2010 Feb; 26(1):1-9. PubMed ID: 20147752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise and bone mineral density in mature female athletes.
    Dook JE; James C; Henderson NK; Price RI
    Med Sci Sports Exerc; 1997 Mar; 29(3):291-6. PubMed ID: 9139166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the effect of hand preference on upper limb bone mineral and soft tissue composition in young and elderly women by dual-energy X-ray absorptiometry.
    Taaffe DR; Lewis B; Marcus R
    Clin Physiol; 1994 Jul; 14(4):393-404. PubMed ID: 7955937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of angular motion and gravity to tibial acceleration.
    Lafortune MA; Hennig EM
    Med Sci Sports Exerc; 1991 Mar; 23(3):360-3. PubMed ID: 2020275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gender comparisons of the mechanomyographic responses to maximal concentric and eccentric isokinetic muscle actions.
    Evetovich TK; Housh TJ; Johnson GO; Smith DB; Ebersole KT; Perry SR
    Med Sci Sports Exerc; 1998 Dec; 30(12):1697-702. PubMed ID: 9861602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.