These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22431264)

  • 1. High-performance and stable organic transistors and circuits with patterned polypyrrole electrodes.
    Li L; Jiang L; Wang W; Du C; Fuchs H; Hu W; Chi L
    Adv Mater; 2012 Apr; 24(16):2159-64. PubMed ID: 22431264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip metal/polypyrrole quasi-reference electrodes for robust ISFET operation.
    Duarte-Guevara C; Swaminathan VV; Burgess M; Reddy B; Salm E; Liu YS; Rodriguez-Lopez J; Bashir R
    Analyst; 2015 May; 140(10):3630-41. PubMed ID: 25869990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses.
    Yoon H; Lee SH; Kwon OS; Song HS; Oh EH; Park TH; Jang J
    Angew Chem Int Ed Engl; 2009; 48(15):2755-8. PubMed ID: 19274689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly stable and flexible transparent conductive polymer electrode patterns for large-scale organic transistors.
    Zhao P; Tang Q; Zhao X; Tong Y; Liu Y
    J Colloid Interface Sci; 2018 Jun; 520():58-63. PubMed ID: 29529461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directly Patterning Conductive Polymer Electrodes on Organic Semiconductor via In Situ Polymerization in Microchannels for High-Performance Organic Transistors.
    Wang S; Wang Z; Huang Y; Hu Y; Yuan L; Guo S; Zheng L; Chen M; Yang C; Zheng Y; Qi J; Yu L; Li H; Wang W; Ji D; Chen X; Li J; Li L; Hu W
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17852-17860. PubMed ID: 33825449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electrode's effect on the stability of organic transistors and circuits.
    Li L; Meise-Gresch K; Jiang L; Du C; Wang W; Fuchs H; Chi L
    Adv Mater; 2012 Jun; 24(22):3053-8. PubMed ID: 22549823
    [No Abstract]   [Full Text] [Related]  

  • 7. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes.
    Peng S; Fan L; Wei C; Liu X; Zhang H; Xu W; Xu J
    Carbohydr Polym; 2017 Feb; 157():344-352. PubMed ID: 27987937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance spectra of polypyrrole coated platinum electrodes.
    Onnela N; Savolainen V; Hiltunen M; Kellomäki M; Hyttinen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():539-42. PubMed ID: 24109743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Asymmetric Threadlike Supercapacitors Based on NiCo
    Wang Q; Ma Y; Wu Y; Zhang D; Miao M
    ChemSusChem; 2017 Apr; 10(7):1427-1435. PubMed ID: 28195423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Fiber-Based Organic Electrochemical Transistors as a Platform for Highly Sensitive Dopamine Monitoring.
    Qing X; Wang Y; Zhang Y; Ding X; Zhong W; Wang D; Wang W; Liu Q; Liu K; Li M; Lu Z
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13105-13113. PubMed ID: 30896142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing.
    Wang Y; Qing X; Zhou Q; Zhang Y; Liu Q; Liu K; Wang W; Li M; Lu Z; Chen Y; Wang D
    Biosens Bioelectron; 2017 Sep; 95():138-145. PubMed ID: 28437640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically Conductive Polydopamine-Polypyrrole as High Performance Biomaterials for Cell Stimulation in Vitro and Electrical Signal Recording in Vivo.
    Kim S; Jang LK; Jang M; Lee S; Hardy JG; Lee JY
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33032-33042. PubMed ID: 30192136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polypyrrole-coated electrodes show thickness-dependent stability in different conditions during 42-day follow-up in vitro.
    Alarautalahti V; Hiltunen M; Onnela N; Nymark S; Kellomäki M; Hyttinen J
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2202-2213. PubMed ID: 29058808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-solution-processed, high-performance n-channel organic transistors and circuits: toward low-cost ambient electronics.
    Zhao Y; Di CA; Gao X; Hu Y; Guo Y; Zhang L; Liu Y; Wang J; Hu W; Zhu D
    Adv Mater; 2011 Jun; 23(21):2448-53. PubMed ID: 21394796
    [No Abstract]   [Full Text] [Related]  

  • 15. Implantable polypyrrole bioelectrodes inducing anti-inflammatory macrophage polarization for long-term in vivo signal recording.
    Lee S; Park S; Park J; Lee JY
    Acta Biomater; 2023 Sep; 168():458-469. PubMed ID: 37414115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroreduction of hexavalent chromium using a polypyrrole-modified electrode under potentiostatic and potentiodynamic conditions.
    Tian Y; Huang L; Zhou X; Wu C
    J Hazard Mater; 2012 Jul; 225-226():15-20. PubMed ID: 22609389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air-stable and high-mobility n-channel organic transistors based on small-molecule/polymer semiconducting blends.
    Zhong H; Smith J; Rossbauer S; White AJ; Anthopoulos TD; Heeney M
    Adv Mater; 2012 Jun; 24(24):3205-11. PubMed ID: 22605461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypyrrole nanotube embedded reduced graphene oxide transducer for field-effect transistor-type H2O2 biosensor.
    Park JW; Park SJ; Kwon OS; Lee C; Jang J
    Anal Chem; 2014 Feb; 86(3):1822-8. PubMed ID: 24410346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driving high-performance n- and p-type organic transistors with carbon nanotube/conjugated polymer composite electrodes patterned directly from solution.
    Hellstrom SL; Jin RZ; Stoltenberg RM; Bao Z
    Adv Mater; 2010 Oct; 22(37):4204-8. PubMed ID: 20626010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection.
    Wang Y; Zhou Z; Qing X; Zhong W; Liu Q; Wang W; Li M; Liu K; Wang D
    Anal Bioanal Chem; 2016 Aug; 408(21):5779-5787. PubMed ID: 27342794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.