These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 22431486)

  • 21. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial photosynthesis for solar fuels.
    Styring S
    Faraday Discuss; 2012; 155():357-76. PubMed ID: 22470985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semi-biological approaches to solar-to-chemical conversion.
    Fang X; Kalathil S; Reisner E
    Chem Soc Rev; 2020 Jul; 49(14):4926-4952. PubMed ID: 32538416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From natural to artificial photosynthesis.
    Barber J; Tran PD
    J R Soc Interface; 2013 Apr; 10(81):20120984. PubMed ID: 23365193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis.
    Smith PT; Nichols EM; Cao Z; Chang CJ
    Acc Chem Res; 2020 Mar; 53(3):575-587. PubMed ID: 32124601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Turning Perspective in Photoelectrocatalytic Cells for Solar Fuels.
    Perathoner S; Centi G; Su D
    ChemSusChem; 2016 Feb; 9(4):345-57. PubMed ID: 26663767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis.
    Grills DC; Polyansky DE; Fujita E
    ChemSusChem; 2017 Nov; 10(22):4359-4373. PubMed ID: 28898568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solar-driven water-splitting provides a solution to the energy problem underpinning climate change.
    Barber J
    Biochem Soc Trans; 2020 Dec; 48(6):2865-2874. PubMed ID: 33242067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon nanotubes for sustainable energy applications.
    Centi G; Perathoner S
    ChemSusChem; 2011 Jul; 4(7):913-25. PubMed ID: 21671406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation, capture, and utilization of industrial carbon dioxide.
    Hunt AJ; Sin EH; Marriott R; Clark JH
    ChemSusChem; 2010 Mar; 3(3):306-22. PubMed ID: 20049768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis.
    Aresta M; Dibenedetto A; Angelini A
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20120111. PubMed ID: 23816913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and mechanistic aspects of Mn-oxo and co-based compounds in water oxidation catalysis and potential applications in solar fuel production.
    Hou HJ
    J Integr Plant Biol; 2010 Aug; 52(8):704-11. PubMed ID: 20666926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid bioinorganic approach to solar-to-chemical conversion.
    Nichols EM; Gallagher JJ; Liu C; Su Y; Resasco J; Yu Y; Sun Y; Yang P; Chang MC; Chang CJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11461-6. PubMed ID: 26305947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production.
    Lindblad P; Lindberg P; Oliveira P; Stensjö K; Heidorn T
    Ambio; 2012; 41 Suppl 2(Suppl 2):163-8. PubMed ID: 22434446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.
    Kalyanasundaram K; Graetzel M
    Curr Opin Biotechnol; 2010 Jun; 21(3):298-310. PubMed ID: 20439158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use and misuse of photosynthesis in the quest for novel methods to harness solar energy to make fuel.
    Cogdell RJ; Gardiner AT; Molina PI; Cronin L
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110603. PubMed ID: 23816912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monolithic cells for solar fuels.
    Rongé J; Bosserez T; Martel D; Nervi C; Boarino L; Taulelle F; Decher G; Bordiga S; Martens JA
    Chem Soc Rev; 2014 Dec; 43(23):7963-81. PubMed ID: 24526085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light-powered molecular devices and machines.
    Ceroni P; Credi A; Venturi M; Balzani V
    Photochem Photobiol Sci; 2010 Dec; 9(12):1561-73. PubMed ID: 20976372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2.
    Yadav RK; Baeg JO; Oh GH; Park NJ; Kong KJ; Kim J; Hwang DW; Biswas SK
    J Am Chem Soc; 2012 Jul; 134(28):11455-61. PubMed ID: 22769600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.