These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 22431526)
1. A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces. Suk HI; Lee SW IEEE Trans Pattern Anal Mach Intell; 2013 Feb; 35(2):286-99. PubMed ID: 22431526 [TBL] [Abstract][Full Text] [Related]
2. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2730-3. PubMed ID: 19605314 [TBL] [Abstract][Full Text] [Related]
3. An empirical bayesian framework for brain-computer interfaces. Lei X; Yang P; Yao D IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):521-9. PubMed ID: 19622442 [TBL] [Abstract][Full Text] [Related]
4. Embedded grey relation theory in Hopfield neural network: application to motor imagery EEG recognition. Hsu WY Clin EEG Neurosci; 2013 Oct; 44(4):257-64. PubMed ID: 23536381 [TBL] [Abstract][Full Text] [Related]
5. Adaptive spatio-temporal filtering for movement related potentials in EEG-based brain-computer interfaces. Lu J; Xie K; McFarland DJ IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):847-57. PubMed ID: 24723632 [TBL] [Abstract][Full Text] [Related]
6. Classification of motor imagery BCI using multivariate empirical mode decomposition. Park C; Looney D; Naveed ur Rehman ; Ahrabian A; Mandic DP IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):10-22. PubMed ID: 23204288 [TBL] [Abstract][Full Text] [Related]
7. Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces. Wei Q; Wei Z Biomed Mater Eng; 2015; 26 Suppl 1():S1523-32. PubMed ID: 26405916 [TBL] [Abstract][Full Text] [Related]
8. Simultaneously optimizing spatial spectral features based on mutual information for EEG classification. Meng J; Yao L; Sheng X; Zhang D; Zhu X IEEE Trans Biomed Eng; 2015 Jan; 62(1):227-40. PubMed ID: 25122834 [TBL] [Abstract][Full Text] [Related]
9. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach. Miao M; Zeng H; Wang A; Zhao C; Liu F J Neurosci Methods; 2017 Feb; 278():13-24. PubMed ID: 28012854 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the performance of motor imagery EEG classification using phase features. Hsu WY Clin EEG Neurosci; 2015 Apr; 46(2):113-8. PubMed ID: 25404753 [TBL] [Abstract][Full Text] [Related]
11. Single-trial connectivity estimation for classification of motor imagery data. Billinger M; Brunner C; Müller-Putz GR J Neural Eng; 2013 Aug; 10(4):046006. PubMed ID: 23751454 [TBL] [Abstract][Full Text] [Related]
12. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings. Ince NF; Arica S; Tewfik A J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207 [TBL] [Abstract][Full Text] [Related]
13. Time sparsification of EEG signals in motor-imagery based brain computer interfaces. Higashi H; Tanaka T Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4271-4. PubMed ID: 23366871 [TBL] [Abstract][Full Text] [Related]
14. New KF-PP-SVM classification method for EEG in brain-computer interfaces. Yang B; Han Z; Zan P; Wang Q Biomed Mater Eng; 2014; 24(6):3665-73. PubMed ID: 25227081 [TBL] [Abstract][Full Text] [Related]
15. Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy. Kamousi B; Amini AN; He B J Neural Eng; 2007 Jun; 4(2):17-25. PubMed ID: 17409476 [TBL] [Abstract][Full Text] [Related]
16. Active data selection for motor imagery EEG classification. Tomida N; Tanaka T; Ono S; Yamagishi M; Higashi H IEEE Trans Biomed Eng; 2015 Feb; 62(2):458-67. PubMed ID: 25248173 [TBL] [Abstract][Full Text] [Related]
17. Motor imagery EEG discrimination using the correlation of wavelet features. Hsu WY Clin EEG Neurosci; 2015 Apr; 46(2):94-9. PubMed ID: 24599891 [TBL] [Abstract][Full Text] [Related]
18. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface. Siuly S; Li Y IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):526-38. PubMed ID: 22287252 [TBL] [Abstract][Full Text] [Related]
19. Amplitude and phase coupling measures for feature extraction in an EEG-based brain-computer interface. Wei Q; Wang Y; Gao X; Gao S J Neural Eng; 2007 Jun; 4(2):120-9. PubMed ID: 17409486 [TBL] [Abstract][Full Text] [Related]
20. Uncorrelated multiway discriminant analysis for motor imagery EEG classification. Liu Y; Zhao Q; Zhang L Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]