BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 22431923)

  • 1. The brain microenvironment preferentially enhances the radioresistance of CD133(+) glioblastoma stem-like cells.
    Jamal M; Rath BH; Tsang PS; Camphausen K; Tofilon PJ
    Neoplasia; 2012 Feb; 14(2):150-8. PubMed ID: 22431923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines.
    McCord AM; Jamal M; Williams ES; Camphausen K; Tofilon PJ
    Clin Cancer Res; 2009 Aug; 15(16):5145-53. PubMed ID: 19671863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microenvironmental regulation of glioblastoma radioresponse.
    Jamal M; Rath BH; Williams ES; Camphausen K; Tofilon PJ
    Clin Cancer Res; 2010 Dec; 16(24):6049-59. PubMed ID: 21037023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro.
    McCord AM; Jamal M; Shankavaram UT; Lang FF; Camphausen K; Tofilon PJ
    Mol Cancer Res; 2009 Apr; 7(4):489-97. PubMed ID: 19372578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.
    Bao S; Wu Q; McLendon RE; Hao Y; Shi Q; Hjelmeland AB; Dewhirst MW; Bigner DD; Rich JN
    Nature; 2006 Dec; 444(7120):756-60. PubMed ID: 17051156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57.
    Zhu X; Prasad S; Gaedicke S; Hettich M; Firat E; Niedermann G
    Oncotarget; 2015 Jan; 6(1):171-84. PubMed ID: 25426558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Celecoxib and radioresistant glioblastoma-derived CD133+ cells: improvement in radiotherapeutic effects. Laboratory investigation.
    Ma HI; Chiou SH; Hueng DY; Tai LK; Huang PI; Kao CL; Chen YW; Sytwu HK
    J Neurosurg; 2011 Mar; 114(3):651-62. PubMed ID: 21054139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astrocytes enhance the invasion potential of glioblastoma stem-like cells.
    Rath BH; Fair JM; Jamal M; Camphausen K; Tofilon PJ
    PLoS One; 2013; 8(1):e54752. PubMed ID: 23349962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery.
    Facchino S; Abdouh M; Chatoo W; Bernier G
    J Neurosci; 2010 Jul; 30(30):10096-111. PubMed ID: 20668194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD133 is essential for glioblastoma stem cell maintenance.
    Brescia P; Ortensi B; Fornasari L; Levi D; Broggi G; Pelicci G
    Stem Cells; 2013 May; 31(5):857-69. PubMed ID: 23307586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling.
    Annabi B; Lachambre MP; Plouffe K; Sartelet H; BĂ©liveau R
    Mol Carcinog; 2009 Oct; 48(10):910-9. PubMed ID: 19326372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization.
    Rath BH; Wahba A; Camphausen K; Tofilon PJ
    Cancer Med; 2015 Nov; 4(11):1705-16. PubMed ID: 26518290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plastic induction of CD133AC133-positive cells in the microenvironment of glioblastoma spheroids.
    Ohnishi K; Tani T; Bando S; Kubota N; Fujii Y; Hatano O; Harada H
    Int J Oncol; 2014 Aug; 45(2):581-6. PubMed ID: 24897999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glioblastoma and stem cells.
    Altaner C
    Neoplasma; 2008; 55(5):369-74. PubMed ID: 18665745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type 1 collagen as a potential niche component for CD133-positive glioblastoma cells.
    Motegi H; Kamoshima Y; Terasaka S; Kobayashi H; Houkin K
    Neuropathology; 2014 Aug; 34(4):378-85. PubMed ID: 24673436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts.
    Fan X; Khaki L; Zhu TS; Soules ME; Talsma CE; Gul N; Koh C; Zhang J; Li YM; Maciaczyk J; Nikkhah G; Dimeco F; Piccirillo S; Vescovi AL; Eberhart CG
    Stem Cells; 2010 Jan; 28(1):5-16. PubMed ID: 19904829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells.
    Kahn J; Hayman TJ; Jamal M; Rath BH; Kramp T; Camphausen K; Tofilon PJ
    Neuro Oncol; 2014 Jan; 16(1):29-37. PubMed ID: 24311635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain tumor stem cells from an adenoid glioblastoma multiforme.
    Oka N; Soeda A; Noda S; Iwama T
    Neurol Med Chir (Tokyo); 2009 Apr; 49(4):146-50; discussion 150-1. PubMed ID: 19398857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD133/CD15 defines distinct cell subpopulations with differential in vitro clonogenic activity and stem cell-related gene expression profile in in vitro propagated glioblastoma multiforme-derived cell line with a PNET-like component.
    Kahlert UD; Bender NO; Maciaczyk D; Bogiel T; Bar EE; Eberhart CG; Nikkhah G; Maciaczyk J
    Folia Neuropathol; 2012; 50(4):357-68. PubMed ID: 23319191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy.
    Ke CC; Liu RS; Yang AH; Liu CS; Chi CW; Tseng LM; Tsai YF; Ho JH; Lee CH; Lee OK
    Eur J Nucl Med Mol Imaging; 2013 Jan; 40(1):61-71. PubMed ID: 23081821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.