These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22432002)

  • 21. Distinct docking mechanisms mediate interactions between the Msg5 phosphatase and mating or cell integrity mitogen-activated protein kinases (MAPKs) in Saccharomyces cerevisiae.
    Palacios L; Dickinson RJ; Sacristán-Reviriego A; Didmon MP; Marín MJ; Martín H; Keyse SM; Molina M
    J Biol Chem; 2011 Dec; 286(49):42037-42050. PubMed ID: 22006927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative proteomics reveals a Gα/MAPK signaling hub that controls pheromone-induced cellular polarization in yeast.
    Waszczak N; DeFlorio R; Ismael A; Cheng N; Stone DE; Metodiev MV
    J Proteomics; 2019 Sep; 207():103467. PubMed ID: 31351147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae.
    Lam MH; Snider J; Rehal M; Wong V; Aboualizadeh F; Drecun L; Wong O; Jubran B; Li M; Ali M; Jessulat M; Deineko V; Miller R; Lee Me; Park HO; Davidson A; Babu M; Stagljar I
    J Mol Biol; 2015 Jun; 427(11):2088-103. PubMed ID: 25644660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating the Network Basis of Negative Genetic Interactions in Saccharomyces cerevisiae with Integrated Biological Networks and Triplet Motif Analysis.
    Ignatius Pang CN; Goel A; Wilkins MR
    J Proteome Res; 2018 Mar; 17(3):1014-1030. PubMed ID: 29392949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding signaling in yeast: Insights from network analysis.
    Arga KY; Onsan ZI; Kirdar B; Ulgen KO; Nielsen J
    Biotechnol Bioeng; 2007 Aug; 97(5):1246-58. PubMed ID: 17252576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression.
    Prasad V; Venkatesh KV
    BMC Syst Biol; 2008 Nov; 2():97. PubMed ID: 19014615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism.
    Hall JP; Cherkasova V; Elion E; Gustin MC; Winter E
    Mol Cell Biol; 1996 Dec; 16(12):6715-23. PubMed ID: 8943326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily.
    Peggion C; Lopreiato R; Casanova E; Ruzzene M; Facchin S; Pinna LA; Carignani G; Sartori G
    FEBS J; 2008 Dec; 275(23):5919-33. PubMed ID: 19021767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing regulatory features of the current transcriptional network of Saccharomyces cerevisiae.
    Monteiro PT; Pedreira T; Galocha M; Teixeira MC; Chaouiya C
    Sci Rep; 2020 Oct; 10(1):17744. PubMed ID: 33082399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamically reshaping signaling networks to program cell fate via genetic controllers.
    Galloway KE; Franco E; Smolke CD
    Science; 2013 Sep; 341(6152):1235005. PubMed ID: 23950497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.
    Logsdon BA; Mezey J
    PLoS Comput Biol; 2010 Dec; 6(12):e1001014. PubMed ID: 21152011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of the MAPKKK regulator Ste50p in Saccharomyces cerevisiae: a casein kinase I phosphorylation site is required for proper mating function.
    Wu C; Arcand M; Jansen G; Zhong M; Iouk T; Thomas DY; Meloche S; Whiteway M
    Eukaryot Cell; 2003 Oct; 2(5):949-61. PubMed ID: 14555477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of the thresholds for transcriptional activation by the yeast MAP kinases Fus3 and Kss1.
    Winters MJ; Pryciak PM
    Mol Biol Cell; 2018 Mar; 29(5):669-682. PubMed ID: 29321252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response.
    MacGilvray ME; Shishkova E; Chasman D; Place M; Gitter A; Coon JJ; Gasch AP
    PLoS Comput Biol; 2018 May; 13(5):e1006088. PubMed ID: 29738528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A general mechanism for network-dosage compensation in gene circuits.
    Acar M; Pando BF; Arnold FH; Elowitz MB; van Oudenaarden A
    Science; 2010 Sep; 329(5999):1656-60. PubMed ID: 20929850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis.
    Chen SF; Juang YL; Chou WK; Lai JM; Huang CY; Kao CY; Wang FS
    BMC Syst Biol; 2009 Nov; 3():110. PubMed ID: 19943917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feedback phosphorylation of the yeast a-factor receptor requires activation of the downstream signaling pathway from G protein through mitogen-activated protein kinase.
    Feng Y; Davis NG
    Mol Cell Biol; 2000 Jan; 20(2):563-74. PubMed ID: 10611235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rewiring the yeast cell wall integrity (CWI) pathway through a synthetic positive feedback circuit unveils a novel role for the MAPKKK Ssk2 in CWI pathway activation.
    Jiménez-Gutiérrez E; Alegría-Carrasco E; Alonso-Rodríguez E; Fernández-Acero T; Molina M; Martín H
    FEBS J; 2020 Nov; 287(22):4881-4901. PubMed ID: 32150787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-study inference of regulatory networks for more accurate models of gene regulation.
    Castro DM; de Veaux NR; Miraldi ER; Bonneau R
    PLoS Comput Biol; 2019 Jan; 15(1):e1006591. PubMed ID: 30677040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.