BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22432722)

  • 41. Caspases and their substrates.
    Julien O; Wells JA
    Cell Death Differ; 2017 Aug; 24(8):1380-1389. PubMed ID: 28498362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of caspase-7 interaction with RNA.
    Desroches A; Denault JB
    Biochem J; 2021 Jul; 478(13):2681-2696. PubMed ID: 34156061
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis.
    Boucher D; Blais V; Denault JB
    Proc Natl Acad Sci U S A; 2012 Apr; 109(15):5669-74. PubMed ID: 22451931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and characterization of a novel mammalian caspase with proapoptotic activity.
    Eckhart L; Ballaun C; Uthman A; Kittel C; Stichenwirth M; Buchberger M; Fischer H; Sipos W; Tschachler E
    J Biol Chem; 2005 Oct; 280(42):35077-80. PubMed ID: 16120609
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Global mapping of the topography and magnitude of proteolytic events in apoptosis.
    Dix MM; Simon GM; Cravatt BF
    Cell; 2008 Aug; 134(4):679-91. PubMed ID: 18724940
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Global kinetic analysis of proteolysis via quantitative targeted proteomics.
    Agard NJ; Mahrus S; Trinidad JC; Lynn A; Burlingame AL; Wells JA
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):1913-8. PubMed ID: 22308409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of phosphorylation and single nucleotide polymorphisms on caspase substrates processing.
    Kumar S; Cieplak P
    Apoptosis; 2018 Apr; 23(3-4):194-200. PubMed ID: 29453691
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interactome disassembly during apoptosis occurs independent of caspase cleavage.
    Scott NE; Rogers LD; Prudova A; Brown NF; Fortelny N; Overall CM; Foster LJ
    Mol Syst Biol; 2017 Jan; 13(1):906. PubMed ID: 28082348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The DegraBase: a database of proteolysis in healthy and apoptotic human cells.
    Crawford ED; Seaman JE; Agard N; Hsu GW; Julien O; Mahrus S; Nguyen H; Shimbo K; Yoshihara HA; Zhuang M; Chalkley RJ; Wells JA
    Mol Cell Proteomics; 2013 Mar; 12(3):813-24. PubMed ID: 23264352
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Global Profiling of Proteolysis from the Mitochondrial Amino Terminome during Early Intrinsic Apoptosis Prior to Caspase-3 Activation.
    Marshall NC; Klein T; Thejoe M; von Krosigk N; Kizhakkedathu J; Finlay BB; Overall CM
    J Proteome Res; 2018 Dec; 17(12):4279-4296. PubMed ID: 30371095
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cacidases: caspases can cleave after aspartate, glutamate and phosphoserine residues.
    Seaman JE; Julien O; Lee PS; Rettenmaier TJ; Thomsen ND; Wells JA
    Cell Death Differ; 2016 Oct; 23(10):1717-26. PubMed ID: 27367566
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteomic identification of synaptic caspase substrates.
    Victor KG; Heffron DS; Sokolowski JD; Majumder U; Leblanc A; Mandell JW
    Synapse; 2018 Jan; 72(1):. PubMed ID: 28960461
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative assessment of large-scale proteomic studies of apoptotic proteolysis.
    Simon GM; Dix MM; Cravatt BF
    ACS Chem Biol; 2009 Jun; 4(6):401-8. PubMed ID: 19415908
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling.
    Araya LE; Soni IV; Hardy JA; Julien O
    ACS Chem Biol; 2021 Nov; 16(11):2280-2296. PubMed ID: 34553588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel Apoptotic Mediators Identified by Conservation of Vertebrate Caspase Targets.
    Gubina N; Leboeuf D; Piatkov K; Pyatkov M
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32326640
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of the effects of phosphorylation of synthetic peptide substrates on their cleavage by caspase-3 and -7.
    Maluch I; Grzymska J; Snipas SJ; Salvesen GS; Drag M
    Biochem J; 2021 Jun; 478(12):2233-2245. PubMed ID: 34037204
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methods for the proteomic identification of protease substrates.
    Agard NJ; Wells JA
    Curr Opin Chem Biol; 2009 Dec; 13(5-6):503-9. PubMed ID: 19729334
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An unbiased proteomic screen reveals caspase cleavage is positively and negatively regulated by substrate phosphorylation.
    Turowec JP; Zukowski SA; Knight JD; Smalley DM; Graves LM; Johnson GL; Li SS; Lajoie GA; Litchfield DW
    Mol Cell Proteomics; 2014 May; 13(5):1184-97. PubMed ID: 24556848
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini.
    Xu G; Shin SB; Jaffrey SR
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19310-5. PubMed ID: 19892738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.