BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

722 related articles for article (PubMed ID: 22432728)

  • 41. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS.
    Caporaso N; Whitworth MB; Cui C; Fisk ID
    Food Res Int; 2018 Jun; 108():628-640. PubMed ID: 29735099
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stable radical content and anti-radical activity of roasted Arabica coffee: from in-tact bean to coffee brew.
    Troup GJ; Navarini L; Suggi Liverani F; Drew SC
    PLoS One; 2015; 10(4):e0122834. PubMed ID: 25856192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antioxidant activity in barley (Hordeum Vulgare L.) grains roasted in a microwave oven under conditions optimized using response surface methodology.
    Omwamba M; Hu Q
    J Food Sci; 2010; 75(1):C66-73. PubMed ID: 20492152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative evaluation of acrylamide and polycyclic aromatic hydrocarbons contents in Robusta coffee beans roasted by hot air and superheated steam.
    Rattanarat P; Chindapan N; Devahastin S
    Food Chem; 2021 Mar; 341(Pt 1):128266. PubMed ID: 33035858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chlorogenic acids and lactones in regular and water-decaffeinated arabica coffees.
    Farah A; de Paulis T; Moreira DP; Trugo LC; Martin PR
    J Agric Food Chem; 2006 Jan; 54(2):374-81. PubMed ID: 16417293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous roasting and extraction of green coffee beans by pressurized liquid extraction.
    Xu JL; Kim TJ; Kim JK; Choi Y
    Food Chem; 2019 May; 281():261-268. PubMed ID: 30658756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity.
    Fujioka K; Shibamoto T
    J Agric Food Chem; 2006 Aug; 54(16):6054-8. PubMed ID: 16881716
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Roasting effects on formation mechanisms of coffee brew melanoidins.
    Bekedam EK; Loots MJ; Schols HA; Van Boekel MA; Smit G
    J Agric Food Chem; 2008 Aug; 56(16):7138-45. PubMed ID: 18680301
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Roasting Kinetics and Chemical Composition Changes of Robusta Coffee Beans During Hot Air and Superheated Steam Roasting.
    Chindapan N; Soydok S; Devahastin S
    J Food Sci; 2019 Feb; 84(2):292-302. PubMed ID: 30620782
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew.
    Perrone D; Farah A; Donangelo CM
    J Agric Food Chem; 2012 May; 60(17):4265-75. PubMed ID: 22490054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Furan in roasted, ground and brewed coffee.
    Gruczyńska E; Kowalska D; Kozłowska M; Majewska E; Tarnowska K
    Rocz Panstw Zakl Hig; 2018; 69(2):111-118. PubMed ID: 29766689
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Roasting and Cryogenic Grinding Enhance the Antioxidant Property of Sword Beans (
    Jung JY; Rhee JK
    J Microbiol Biotechnol; 2020 Nov; 30(11):1706-1719. PubMed ID: 32830188
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Effect of Heat Processing on Chemical Composition and Antioxidative Activity of Tea Made from Barley Sprouts and Wheat Sprouts.
    Islam MZ; Yu DS; Lee YT
    J Food Sci; 2019 Jun; 84(6):1340-1345. PubMed ID: 31112293
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interactions between volatile and nonvolatile coffee components. 1. Screening of nonvolatile components.
    Charles-Bernard M; Kraehenbuehl K; Rytz A; Roberts DD
    J Agric Food Chem; 2005 Jun; 53(11):4417-25. PubMed ID: 15913304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemical composition and sensory profiling of coffees treated with asparaginase to decrease acrylamide formation during roasting.
    CarolinaVieira-Porto A; Cunha SC; Rosa EC; DePaula J; Cruz AG; Freitas-Silva O; Fernandes JO; Farah A
    Food Res Int; 2024 Jun; 186():114333. PubMed ID: 38729693
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular Identification and Antioxidant Activity Determination among Coffee Varieties Cultivated in Nepal.
    Pokharel S; Pandey GR; Shrestha A; Shrestha R; Tiwari D; Khanal BC; Silwal S
    ScientificWorldJournal; 2023; 2023():7744647. PubMed ID: 37964891
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Incidence, level, and behavior of aflatoxins during coffee bean roasting and decaffeination.
    Soliman KM
    J Agric Food Chem; 2002 Dec; 50(25):7477-81. PubMed ID: 12452679
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Screening of raw coffee for thiol binding site precursors using "in bean" model roasting experiments.
    Müller C; Hofmann T
    J Agric Food Chem; 2005 Apr; 53(7):2623-9. PubMed ID: 15796603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation, identification, and quantification of roasted coffee antibacterial compounds.
    Daglia M; Papetti A; Grisoli P; Aceti C; Spini V; Dacarro C; Gazzani G
    J Agric Food Chem; 2007 Dec; 55(25):10208-13. PubMed ID: 18001036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Roasting Levels and Drying Process of
    Bauer D; Abreu J; Jordão N; Rosa JSD; Freitas-Silva O; Teodoro A
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.