These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 22432793)
1. Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p-n junctions. Mohite AD; Perea DE; Singh S; Dayeh SA; Campbell IH; Picraux ST; Htoon H Nano Lett; 2012 Apr; 12(4):1965-71. PubMed ID: 22432793 [TBL] [Abstract][Full Text] [Related]
2. Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions. Gutsche C; Niepelt R; Gnauck M; Lysov A; Prost W; Ronning C; Tegude FJ Nano Lett; 2012 Mar; 12(3):1453-8. PubMed ID: 22364406 [TBL] [Abstract][Full Text] [Related]
3. Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying. Perea DE; Li N; Dickerson RM; Misra A; Picraux ST Nano Lett; 2011 Aug; 11(8):3117-22. PubMed ID: 21696182 [TBL] [Abstract][Full Text] [Related]
4. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Dan Y; Seo K; Takei K; Meza JH; Javey A; Crozier KB Nano Lett; 2011 Jun; 11(6):2527-32. PubMed ID: 21598980 [TBL] [Abstract][Full Text] [Related]
5. Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions. Christesen JD; Zhang X; Pinion CW; Celano TA; Flynn CJ; Cahoon JF Nano Lett; 2012 Nov; 12(11):6024-9. PubMed ID: 23066872 [TBL] [Abstract][Full Text] [Related]
6. Long minority carrier diffusion lengths in bridged silicon nanowires. Triplett M; Yang Y; Léonard F; Talin AA; Islam MS; Yu D Nano Lett; 2015 Jan; 15(1):523-9. PubMed ID: 25541642 [TBL] [Abstract][Full Text] [Related]
7. Photovoltaic measurements in single-nanowire silicon solar cells. Kelzenberg MD; Turner-Evans DB; Kayes BM; Filler MA; Putnam MC; Lewis NS; Atwater HA Nano Lett; 2008 Feb; 8(2):710-4. PubMed ID: 18269257 [TBL] [Abstract][Full Text] [Related]
9. Study of Si Nanowires Produced by Metal-Assisted Chemical Etching as a Light-Trapping Material in n-type c-Si Solar Cells. Leontis I; Botzakaki MA; Georga SN; Nassiopoulou AG ACS Omega; 2018 Sep; 3(9):10898-10906. PubMed ID: 31459200 [TBL] [Abstract][Full Text] [Related]
11. Encoding Highly Nonequilibrium Boron Concentrations and Abrupt Morphology in p-Type/n-Type Silicon Nanowire Superlattices. Hill DJ; Teitsworth TS; Kim S; Christesen JD; Cahoon JF ACS Appl Mater Interfaces; 2017 Oct; 9(42):37105-37111. PubMed ID: 28956906 [TBL] [Abstract][Full Text] [Related]
12. The influence of the surface migration of gold on the growth of silicon nanowires. Hannon JB; Kodambaka S; Ross FM; Tromp RM Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928 [TBL] [Abstract][Full Text] [Related]
13. Impact of Dopant Compensation on Graded p-n Junctions in Si Nanowires. Amit I; Jeon N; Lauhon LJ; Rosenwaks Y ACS Appl Mater Interfaces; 2016 Jan; 8(1):128-34. PubMed ID: 26650197 [TBL] [Abstract][Full Text] [Related]
14. Carrier Recombination in the Base, Interior, and Surface of InAs/InAlAs Core-Shell Nanowires Grown on Silicon. Zhang K; Li X; Dai W; Toor F; Prineas JP Nano Lett; 2019 Jul; 19(7):4272-4278. PubMed ID: 31244233 [TBL] [Abstract][Full Text] [Related]
15. High Efficiency Hybrid Solar Cells Using Nanocrystalline Si Quantum Dots and Si Nanowires. Dutta M; Thirugnanam L; Trinh PV; Fukata N ACS Nano; 2015 Jul; 9(7):6891-9. PubMed ID: 26167772 [TBL] [Abstract][Full Text] [Related]
16. Tapering control of Si nanowires grown from SiCl₄ at reduced pressure. Krylyuk S; Davydov AV; Levin I ACS Nano; 2011 Jan; 5(1):656-64. PubMed ID: 21158417 [TBL] [Abstract][Full Text] [Related]
17. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions. Wu Y; Yan X; Wei W; Zhang J; Zhang X; Ren X Nanoscale Res Lett; 2018 Apr; 13(1):126. PubMed ID: 29696454 [TBL] [Abstract][Full Text] [Related]
18. Selective Growth of Stacking Fault Free ⟨100⟩ Nanowires on a Polycrystalline Substrate for Energy Conversion Application. Zhang K; Abbas Y; Jan SU; Gao L; Ma Y; Mi Z; Liu X; Xuan Y; Gong JR ACS Appl Mater Interfaces; 2020 Apr; 12(15):17676-17685. PubMed ID: 32212680 [TBL] [Abstract][Full Text] [Related]
19. The effect of doping on low temperature growth of high quality GaAs nanowires on polycrystalline films. DeJarld M; Teran A; Luengo-Kovac M; Yan L; Moon ES; Beck S; Guillen C; Sih V; Phillips J; Milunchick JM Nanotechnology; 2016 Dec; 27(49):495605. PubMed ID: 27834310 [TBL] [Abstract][Full Text] [Related]